【外卖配送】基于matlab蚁群算法求解外卖配送问题【含Matlab源码 2351期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
Matlab路径规划(进阶版)
付费专栏Matlab路径规划(初级版)

⛳️关注优快云海神之光,更多资源等你来!!

⛄一、蚁群算法求解外卖配送问题

1 传统蚁群算法
1.1 蚁群算法的描述

利用蚂蚁运动的随机性进而进行权重的初始化方式,得到迭代次数并计算出全部蚁群的多重路径进行搜索循环。根据模型筛选蚁群选择下一个节点,判断是否全部蚂蚁迭代、信息素的更新,去计算概率并判断禁忌表中是否饱和,当显示饱和已满,最终判断满足结束条件,得出结论。

蚁群系统是在20世纪90年代被意大利学者M.Dorigo、V.Maniezzo等通过观察记录蚂蚁的觅食性所发现的。蚂蚁的觅食过程中会释放一种信息素,蚂蚁之间通过信息素来进行通信和协调,根据释放信息素的浓度选择找到觅食的最短路径。1992年,Marco Doigo的博士论文中正式提出蚁群算法。

在后续对蚁群的觅食行为研究中发现,蚂蚁在外出觅食的路上会释放一种信息素,蚁群内的蚂蚁通过这些信息素从而实现信息的传递。而蚁群算法则是通过模拟蚂蚁种群的这种觅食过程,采用觅食过程中的一些特性,寻找确定最优的路径。

1.2 蚁群算法的优点
蚁群算法(图1)是一种模拟退化算法,反映了蚁群的觅食过程、蚁群在觅食过程中所表现的特性。这种模拟退化算法也具备以下特性:

(1)自组织性。在没有特定的外界干预的条件下,蚂蚁觅食产生自组织性,单个蚂蚁对于路径的无序寻找并且留下信息素产生作用,从而自发地趋向路径的选择,直到寻找到路径的最优解,这一过程经过算法的演变,将无序转化为有序。

(2)并行机制。每只蚂蚁在搜索路径的过程具有独立性的特点,同时也会通过信息素进行搜索路径的交流,也随即共同寻找出最优路径,从而提高搜寻的效率。蚁群算法的普适性是组合优化问题求解的重要方式,也同时增加了算法的可靠性。

(3)鲁棒性。蚁群算法的求解结果不依赖初始路线的选择,搜索过程中也不需要过多的人工因素干扰,收敛程度并不受参数、概率模型的约束。在运行过程中具有稳健性的特点,保障外卖系统大数量分析和接受订单过程中的安全性、系统的可行性。

(4)全局搜索能力强。蚁群算法应用在复杂的搜索任务中时,每一种信息素的产生代表了一只蚂蚁的信息搜索的传递,模型构造继而应用多点同时开始进行独立的解的搜索,从而体现全局进行搜索时其强大搜索的能力,找到多种路径的选择并有效进行最优路径的选择。

2 最优路线求解
对蚂蚁航迹上的信息素优化更新后,求解最优路线,实现过程如下:

(1)将信息素的值设置为1,在迭代中其启发式信息保持不变。

(2)随机选择其一个外卖位置作为蚂蚁a的出发位置,进行第一次航迹的行走,若蚂蚁a未寻访完所有外卖位置,则以蚂蚁a的当前位置开始随机先择下一个外卖位置。

(3)设置一个外卖位置在(1,0)的随机数,如果随机数小于设置的控制参数,则在未走访过多外卖位置中,选择最大可行性的外卖位置作为蚂蚁下一个移动的外卖位置。在蚂蚁走访完所有的外卖位置后返回走访外卖位置的先后顺序。

对蚂蚁个体的选择概率进行积累概率,与产生的随机数进行对比从而选择下一个外卖位置,从不断地迭代中找到最短路径并输出。

⛄二、部分源代码

clc;
clear;
close all;
%% 题目描述:外卖配送问题
%每一个客户都对应特定的商家
%只有一个骑手 %后续可以换成n个骑手
%无限容量、无限里程、无限时间
%现在已经更新为可以有限容量了
%一般是最小里程等求和 作为目标函数,比较符合自然规律;暂时没想到里程接近
%收到订单后要先到商家才能再到客户

%% 数据
% 坐标
Buyer = [-4,-1; -4.5,-0.5; -3,-3; -3,2.5; -3,0.5; -1,-2; -1,-1; -0.5,-1;
-0.5,0; 0,3; 1.5,-4; 1,-3; 1, -2; 0.5,-1; 0.5,3; 2.5,-1; 1.5,0;
2,1; 3,-1; 3,4];
Seller = [2,-3; 0,4; 1,0; -4,-3; 2, -2; 4,-1; 3,3; 4,2; 4,-1; 3,1;
-3,-1; 5,0; -2,0; -4,2; -3,1; -3,-2; -1,2; -1,0;0,1;0,2 ];

% 配重
global Weight
global W_max
Weight = [1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1];
Weight = [Weight;-Weight];%到卖家加上重量,到买家加上负的重量
W_max = 3;%这样就意味着不能带超过W_max份的物品

n = size(Seller,1);

% 前提
global pre %前提列表,必须要先经过前提
pre(1:n) = 0; %卖家无前提
pre(n+1:2*n) = 1:n; %买家前提是对应卖家

%% 求解部分
% 测试外卖问题
X = [Seller;Buyer];
[Result,~] = ACO(X, 0);
% 测试TSP
% X = Seller;
% [Result,~] = ACO(X, 1);

%% 画图
plot(Result(:,1),Result(:,2),‘o-’);
hold on;
plot(Seller(:,1),Seller(:,2),‘o’);
plot(Result(1,1),Result(1,2),‘rp’,‘MarkerSize’,9);

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]连杰,卢宇航,张彤凤,魏存拴,张秀文.基于改进的蚁群算法的无人机送外卖航迹规划[J].科技经济市场. 2020(12)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值