【验证码识别】基于matlab GUI遗传算法和最大熵优化+大津法(OTSU)+自定义阈值数字验证码识别【含Matlab源码 1694期】

该博客介绍了基于MATLAB实现的数字验证码识别系统,包括GUI设计、图像预处理(灰度化、二值化)、字符分割技术(遗传算法、最大熵优化、大津法)以及BP神经网络的训练与测试。使用了英国萨里大学的印刷体数字数据集,识别准确率达到了93.47%。博客还提供了部分源代码,并探讨了不同方法在字符分割中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
Matlab图像处理(进阶版)
付费专栏Matlab图像处理(初级版)

⛳️关注优快云海神之光,更多资源等你来!!

⛄一、案例

本项目基于MATLAB完成数字验证码识别的GUI设计,图像处理,验证码生成、识别等功能。采用BP神经网络来实现对验证码图像的识别。验证码的识别,大概分为图片预处理、分割字符、识别字符三个过程,其中分割字符最为困难。本文采用基于遗传算法和最大熵优化的图像分割技术、大津法(OTSU)、自定义阈值三种技术进行字符分割,并作进一步分析。利用英国萨里大学提供的印刷体数字数据集,共10160张图片,90%的数据用于训练BP神经网络,剩余10%的数据用于测试,最终识别准确率达到93.47%,利用训练所得BP模型完成识别字符,最终验证码图像识别效果较佳。

⛄二、验证码识别简介

1 验证码获取及预处理
1.1 验证码训练集与测试集
图像处理库批量生成各项参数可调的数字验证码图片,包括图片大小、格式、干扰点等,自动生成3000张4位数字图片验证码, 默认图片大小为60×160, RGB格式, 包含少量的干扰点、线条及扭曲.本文使用其中的2400张图片作为训练集训练网络参数,600张图片作为测试集测试网络识别的效果.训练集与测试集无交叉重叠.部分验证码样本示例图
如图1所示.
在这里插入图片描述
图1 验证码样本
1.2验证码图片预处理
1.2.1灰度化处理
对于自动生成的RGB格式图片验证码, 从图1中可以看出会有噪点、线条及相互连接等一定的干扰来模拟网络环境中的验证码.由于灰度图像的像素点变化范围较RGB格式的图像像素点小得多, 因而在进行图像处理时, 会首先进行灰度化图像.灰度化方法一般有分量法、平均值法、最大值法、加权平均法.本文采用加权平均法提取灰度图,将原RGB图像三个分量的像素值以不同的权重进行加权平均后得到的像素值作为灰度值,其常用的计算公式如下:Gray=0.2989R+0.5780G+0.1140B
其中, Gray表示所求坐标(i, j) 位置处的像素值, R, G, B分别为三个分量的坐标(ij) 位置的像素值.

1.2.2二值化处理
图像的二值化处理,是指将灰度图像像素点的灰度值由某个阈值划分为两部分,使图像显示出明显的黑色及白色效果,便于对图像进一步处理,使图像计算更为简单,且有利于凸显出关注目标的轮廓.
二值化操作的关键在于阈值的选取.本文中阈值设为200,预处理前的图片与预处理后的图片对比如图2与图3所示.
在这里插入图片描述
图2 预处理前的图片
在这里插入图片描述
图3 预处理后的图片

⛄三、部分源代码

function varargout = appgui(varargin)
% APPGUI MATLAB code for appgui.fig
% APPGUI, by itself, creates a new APPGUI or raises the existing
% singleton*.
%
% H = APPGUI returns the handle to a new APPGUI or the handle to
% the existing singleton*.
%
% APPGUI(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in APPGUI.M with the given input arguments.
%
% APPGUI(‘Property’,‘Value’,…) creates a new APPGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before appgui_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to appgui_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help appgui

% Last Modified by GUIDE v2.5 27-Dec-2021 00:45:34

% Begin initialization code - DO NOT EDIT
global I_white
I_white = uint8(ones(80,200)*255);
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @appgui_OpeningFcn, …
‘gui_OutputFcn’, @appgui_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before appgui is made visible.
function appgui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to appgui (see VARARGIN)
h = handles.figure1; %获取句柄
newIcon = javax.swing.ImageIcon(‘.\Icon.png’); %读取图片文件
figFrame = get(h,‘JavaFrame’);
figFrame.setFigureIcon(newIcon);
% Choose default command line output for appgui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes appgui wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = appgui_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in testCode_btn.
function testCode_btn_Callback(hObject, eventdata, handles)
% hObject handle to testCode_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global str filename level bpnn lastfilename lastway change_level

if isequal(level,[])
level = 0.9;
end
way = get(handles.way_num, ‘value’);
if filename == 0
h=warndlg(‘请先选择一张图片!’,‘警告’,‘modal’);
return
end
if isequal(lastfilename,filename) && way ==lastway && change_level == 0
h=warndlg(‘请重新选择一张图片或方法!’,‘警告’,‘modal’);
return
end

load bp.mat
bpnn = net;
way = get(handles.way_num, ‘value’);
[resultCode,gray_I,BW_I,Med_I,bwarea_I,Idx] = testcode(bpnn,str,filename,false,way,level);
axes(handles.axes3);
imshow(gray_I);
axes(handles.axes4);
imshow(BW_I);
axes(handles.axes5);
imshow(Med_I);
axes(handles.axes6);
imshow(bwarea_I);
axes(handles.axes7);
imshow(bwarea_I);
[L,num] = bwlabel(bwarea_I,8); %找到图中的连通域,num为连通域数量
for i=1:num
hold on
plot([Idx(i,3),Idx(i,3)],[Idx(i,1),Idx(i,2)],‘r–’,‘LineWidth’, 2);
hold on
plot([Idx(i,4),Idx(i,4)],[Idx(i,1),Idx(i,2)],‘r–’,‘LineWidth’, 2);
hold on
plot([Idx(i,3),Idx(i,4)],[Idx(i,1),Idx(i,1)],‘r–’,‘LineWidth’, 2);
hold on
plot([Idx(i,3),Idx(i,4)],[Idx(i,2),Idx(i,2)],‘r–’,‘LineWidth’, 2);
end
code = ‘’;
for i=1:length(resultCode)
code =[code,num2str(resultCode(i))];
end
set(handles.result_edit,‘String’,code)
lastfilename = filename;
lastway = way;
change_level = 0;

function result_Callback(hObject, eventdata, handles)
% hObject handle to result (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,‘String’) returns contents of result as text
% str2double(get(hObject,‘String’)) returns contents of result as a double

% — Executes during object creation, after setting all properties.
function result_CreateFcn(hObject, eventdata, handles)
% hObject handle to result (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end

function level_num_Callback(hObject, eventdata, handles)
% hObject handle to level_num (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,‘String’) returns contents of level_num as text
% str2double(get(hObject,‘String’)) returns contents of level_num as a double

% — Executes during object creation, after setting all properties.
function level_num_CreateFcn(hObject, eventdata, handles)
% hObject handle to level_num (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end

% — Executes on button press in pushbutton19.
function pushbutton19_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton19 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global level change_level
level_temp = get(handles.level_num,‘String’);
if ~isequal(size(level_temp),[1 0])
level = str2double(level_temp);
msgbox(‘灰度值修改成功!’, ‘提示’);
change_level = 1;
else
h=warndlg(‘请输入数值!’,‘警告’,‘modal’);
end

⛄四、运行结果

在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]李世成,东野长磊.基于卷积神经网络的验证码识别[J].软件. 2020,41(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值