【图像检索】基于matlab GUI KNN图像检索【含Matlab源码 267期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
Matlab图像处理(进阶版)
付费专栏Matlab图像处理(初级版)

⛳️关注优快云海神之光,更多资源等你来!!

⛄一、 KNN算法简介

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

1 定义
如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,即由你的“邻居”来推断出你的类别.

2 距离公式
两个样本的距离可以通过如下公式计算,又叫欧式距离
在这里插入图片描述
3 KNN算法的步骤
(1)计算已知类别数据集中每个点与当前点的距离;
(2)选取与当前点距离最小的K个点;
(3)统计前K个点中每个类别的样本出现的频率;
(4)返回前K个点出现频率最高的类别作为当前点的预测分类。

4 KNN原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
5 KNN的优缺点
在这里插入图片描述
6 KNN性能问题
NN的性能问题也是KNN的缺点之一。使用KNN,可以很容易的构造模型,但在对待分类样本进行分类时,为了获得K近邻,必须采用暴力搜索的方式,扫描全部训练样本并计算其与待分类样本之间的距离,系统开销很大。

⛄二、部分源代码

function varargout = gui_class_run(varargin)
% GUI_CLASS_RUN M-file for gui_class_run.fig
% GUI_CLASS_RUN, by itself, creates a new GUI_CLASS_RUN or raises the existing
% singleton*.
%
% H = GUI_CLASS_RUN returns the handle to a new GUI_CLASS_RUN or the handle to
% the existing singleton*.
%
% GUI_CLASS_RUN(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in GUI_CLASS_RUN.M with the given input arguments.
%
% GUI_CLASS_RUN(‘Property’,‘Value’,…) creates a new GUI_CLASS_RUN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before gui_class_run_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to gui_class_run_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help gui_class_run

% Last Modified by GUIDE v2.5 23-Feb-2021 16:38:14

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @gui_class_run_OpeningFcn, …
‘gui_OutputFcn’, @gui_class_run_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before gui_class_run is made visible.
function gui_class_run_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to gui_class_run (see VARARGIN)

% Choose default command line output for gui_class_run
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes gui_class_run wait for user response (see UIRESUME)
% uiwait(handles.figure1);
set(handles.pushbutton4,‘Visible’,‘off’);set(handles.pushbutton5,‘Visible’,‘off’);
set(handles.axes1,‘Visible’,‘off’);set(handles.axes2,‘Visible’,‘off’);set(handles.axes3,‘Visible’,‘off’);
set(handles.axes4,‘Visible’,‘off’);set(handles.axes5,‘Visible’,‘off’);set(handles.axes6,‘Visible’,‘off’);
set(handles.axes7,‘Visible’,‘off’);set(handles.axes8,‘Visible’,‘off’);set(handles.axes9,‘Visible’,‘off’);
set(handles.axes10,‘Visible’,‘off’);

% — Outputs from this function are returned to the command line.
function varargout = gui_class_run_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.pushbutton2,‘Visible’,‘off’);
set(handles.pushbutton4,‘Visible’,‘on’);set(handles.pushbutton5,‘Visible’,‘off’);
set(handles.axes1,‘Visible’,‘on’);set(handles.axes2,‘Visible’,‘on’);set(handles.axes3,‘Visible’,‘on’);
set(handles.axes4,‘Visible’,‘on’);set(handles.axes5,‘Visible’,‘on’);set(handles.axes6,‘Visible’,‘on’);
set(handles.axes7,‘Visible’,‘on’);set(handles.axes8,‘Visible’,‘on’);set(handles.axes9,‘Visible’,‘on’);
set(handles.axes10,‘Visible’,‘on’);
pause(1);
[J P]=uigetfile(‘.’,‘select the Query Image’);
I=imread(strcat(P,J));
I=imresize(I,[256 256]);
axes(handles.axes1);imshow(I);title(‘Query Image’);
I=im2double(I);
k=1;wn={‘haar’,‘db2’,‘db4’,‘dmey’,‘bior1.1’};
for w=1:5 % three wavelets
for c=1:3 % three band of colors
T=I(:,:,c);
for i=1:6 % six decomposition levels
[a1,b1,c1,d1]=dwt2(T,wn{w});
fq(k,:)=my_feature(a1); % extraction of features
T=a1;
k=k+1;
end
end
end
handles.fq=fq;
% Update handles structure
guidata(hObject, handles);

% — Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.pushbutton1,‘Visible’,‘off’);
set(handles.pushbutton5,‘Visible’,‘on’);
[J P]=uigetfile(‘.’,‘select the Query Image’);
I=imread(strcat(P,J));
I=imresize(I,[256 256]);
I=im2double(I);
k=1;wn={‘haar’,‘db2’,‘db4’,‘dmey’,‘bior1.1’};
for w=1:5 % three wavelets
for c=1:3 % three band of colors
T=I(:,:,c);
for i=1:6 % six decomposition levels
[a1,b1,c1,d1]=dwt2(T,wn{w});
fq(k,:)=my_feature(a1); % extraction of features
T=a1;
k=k+1;
end
end
end
set(handles.axes1,‘Visible’,‘on’);
axes(handles.axes1);imshow(I);title(‘Query Image’);
% — Executes on button press in pushbutton3.
handles.fq=fq;
guidata(hObject, handles);

% — Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
F=dir(‘database’);
F=char(F.name);
sz=size(F,1)-3;
h=waitbar(0,‘Please wait the system is searching’ );
g=[];
for i=1:4
g=[g repmat([i],1,10)];
end
for ff=1:sz
str=strcat(num2str(ff),‘.jpg’);
cd database
I=imread(str);
cd …
I=imresize(I,[256 256]);
I=im2double(I);
k=1;wn={‘haar’,‘db2’,‘db4’,‘dmey’,‘bior1.1’};
for w=1:5 % three wavelets
for c=1:3 % three band of colors
T=I(:,:,c);
for i=1:6 % six decomposition levels
[a1,b1,c1,d1]=dwt2(T,wn{w});
fv1(k,:)=my_feature(a1); % extraction of features
T=a1;
k=k+1;
end
end
end
FT{ff}=fv1;
waitbar(ff/sz);
end
close(h);
fq=handles.fq;

for ii=1:length(FT)
ft=FT{ii};
D(ii)=sum(sum(dist(ft(😃‘,fq(😃)))/numel(I);
end
DD=sort(D);
for i=1:10
dx=find(DD(i)==D);
str=strcat(num2str(dx),’.jpg’);
cd database
JJ{i}=imread(str);
cd …
end
axes(handles.axes2);imshow(JJ{2});axes(handles.axes3);imshow(JJ{3});axes(handles.axes4);imshow(JJ{4});
axes(handles.axes5);imshow(JJ{5});axes(handles.axes6);imshow(JJ{6});axes(handles.axes7);imshow(JJ{7});
axes(handles.axes8);imshow(JJ{8});axes(handles.axes9);imshow(JJ{9});axes(handles.axes10);imshow(JJ{10});

% — Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
fq=handles.fq;
F=dir(‘database’);
F=char(F.name);
sz=size(F,1)-3;
h=waitbar(0,‘Please wait the system is searching’ );
g=[];
for i=1:4
g=[g repmat([i],1,10)];
end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]谭立球,谷士文,夏胜平.基于RSOM和KNN的图像内容检索[J].微电子学与计算机. 2007,(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值