使用 PyTorch 实现并训练 VGGNet 用于 MNIST 分类

        本文将展示如何使用 PyTorch 实现一个经典的 VGGNet 网络,并在 MNIST 数据集上进行训练和测试。我们将从模型构建开始,涵盖数据预处理、模型训练、评估、保存与加载模型,以及可视化预测结果等全过程。


1. VGGNet 模型的实现

        首先,我们实现一个标准的 VGGNet 网络。VGGNet 是一个深度卷积神经网络,它由多个卷积层和全连接层组成,广泛应用于图像分类任务。

VGGNet 模型结构:
  • 卷积层:VGGNet 采用了简单的结构,使用多个卷积层,每层卷积后跟一个 ReLU 激活函数和一个 最大池化 层。
  • 全连接层:经过卷积层提取特征后,VGGNet 会将特征图展平,并通过全连接层进行分类。
import torch.nn as nn

class VGG(nn.Module):
    def __init__(self, num_classes=10, input_channels=1):
        """
        VGG 网络的初始化方法,包含卷积层和全连接层。

        参数:
        - num_classes (int): 分类的类别数量,默认 10 (适用于 MNIST)
        - input_channels (int): 输入图片的通道数,默认 1 (适用于灰度图像)
        """
        super(VGG, self).__init__()

        # 构建卷积层部分
        self.features = self._make_layers(input_channels)

        # 构建分类器部分
        self.classifier = self._make_classifier(num_classes)

    def _make_layers(self, input_channels):
        """
        构建卷积层部分,通过堆叠卷积层、ReLU 激活和池化层来构建特征提取部分

        参数:
        - input_channels (int): 输入图像的通道数,默认为 1(灰度图)

        返回:
        - features (nn.Sequential): 包含卷积层和池化层的神经网络模块
        """
        layers = []
        # 卷积块 1
        layers += self._conv_block(input_channels, 64)
        # 卷积块 2
        layers += self._conv_block(64, 128)
        # 卷积块 3
        layers += self._conv_block(128, 256)
        # 卷积块 4
        layers += self._conv_block(256, 512)

        # 将所有卷积块和池化层堆叠在一起
        return nn.Sequential(*layers)

    def _conv_block(self, in_channels, out_channels):
        """
        创建一个卷积块,包含两个卷积层和一个最大池化层

        参数:
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值