成电作业1在内存中构建一个10叉非完全树T10并读出来

该博客围绕实验展开,先阐述代码思想,即创建随机非完全10叉树,用1 - 9表示节点值、0表示空节点,将其存入文件,再读文件创建对应二叉树并输出。还包含创建树和读树的代码。

实验要求

在这里插入图片描述

代码思想

首先创建随机的非完全10叉树,使用1-9表示节点的值,0表示空节点,将该完全10叉树存入文件中,后读文件创造出对应的二叉树并输出。

创建树代码

#include<stdio.h>
#include<stdlib.h>
#define TEN 10
#define MAXLEVEL 7
#define MaxSize 10000000
typedef struct tree{

    int     data;
    int Level;
    struct tree   *children[TEN];
 
}tree;

//初始化队头和队尾指针开始时都为0
typedef struct queue{
    struct tree* numQ[MaxSize];
    int front;
    int rear;
}Queue;
Queue Q;

void initilize() { //初始化队列
    Q.front = 0;
    Q.rear = 0;
}

void Push(struct tree* root) { //入队
    Q.numQ[++Q.rear] = root;
}

struct tree* Pop() { //出队
    return Q.numQ[++Q.front];
}

int empty() { //判断对列是否为空
    return Q.rear == Q.front;
}


int num = 1;

    
void LevelOrderTraversal (struct tree* root) { //层次遍历用于查看树
    struct tree *temp;
    int NowLevel=root->Level;
    Push(root);
    while (!empty()) {
        temp = Pop();
        if(NowLevel!=temp->Level)
        {
            printf("\n");
            NowLevel=temp->Level;
        }
        printf("%d ", temp->data);  //输出队首结点
        for (int i = 0; i < TEN; i++){
            if(NowLevel<MAXLEVEL)
            {   
                if(temp->children[i])
                    Push(temp->children[i]);       
                else
                    {
                    tree *NodeNULL;
                    NodeNULL=(tree*)malloc(sizeof(tree));
                    NodeNULL->data=0;
                    NodeNULL->Level=NowLevel+1;
                    for(int j=0;j<TEN;j++)
                    {
                        NodeNULL->children[j]=NULL;
                    }
                    Push(NodeNULL);
                    }
                
                //break;
            }
            
        }
    }
}
void preOrderTraversal (struct tree* root,int Level) { //前序遍历用于输出树
        int RootLevel=Level;
        if(root&&RootLevel<=MAXLEVEL)
        {
            
            printf("%d ",root->data);
            FILE *fp=NULL;
            if((fp=fopen("/Users/apple/Documents/Linuxhomework1/Ftree.txt", "a+"))!=NULL)
                {
                        ;
                }
            else 
                printf("can't open Ftree for write\n");
            fprintf(fp,"%d ",root->data);
            fclose(fp);
            for(int i=0;i<TEN;i++)
            {
                preOrderTraversal(root->children[i],root->Level+1);
            }
        }
        else if(RootLevel<=MAXLEVEL)
        {   

            printf("0 ");
            FILE *fp=NULL;
            if((fp=fopen("/Users/apple/Documents/Linuxhomework1/Ftree.txt", "a+"))!=NULL)
                {
                        ;
                }
            else 
                printf("can't open Ftree for write\n");
            fprintf(fp,"%d ",0);
            fclose(fp);
        }
        else
        {
                ;
        }
        
}
tree *CreateTree(int Level)
{
    int RandTEN;
    int j=1;
    tree *Node;
    Node=(tree*)malloc(sizeof(tree));
    //num=rand()%MaxSize;
    num=rand()%9+1;
    //printf("%d\n",num);
    Node->data=num;
    Node->Level=Level;

    for(j=0;j<TEN;j++)
        {
            Node->children[j]=NULL;
        }
    RandTEN=rand()%TEN+1;//最小为1
    if(Level<MAXLEVEL)
    {
        for(j=0;j<RandTEN;j++)
        {
            Node->children[j]=CreateTree(Level+1);
        }
    }
    return Node;
}
int main()
{
    tree *T;
    initilize();
    T=CreateTree(1);
    printf("TreeDone\n");
    preOrderTraversal(T,T->Level);
    printf("predon");
    return 0;
}

读树代码

#include<stdio.h>
#include<stdlib.h>
#define TEN 10
#define MAXLEVEL 7
#define MaxSize 10000000
typedef struct tree{

    int     data;
    int Level;
    struct tree   *children[TEN];
 
}tree;
//初始化队头和队尾指针开始时都为0
typedef struct queue{
    struct tree* numQ[MaxSize];
    int front;
    int rear;
}Queue;
Queue Q;

void initilize() { //初始化队列
    Q.front = 0;
    Q.rear = 0;
}

void Push(struct tree* root) { //入队
    Q.numQ[++Q.rear] = root;
}

struct tree* Pop() { //出队
    return Q.numQ[++Q.front];
}

int empty() { //判断对列是否为空
    return Q.rear == Q.front;
}

void LevelOrderTraversal (struct tree* root) { //层次遍历用于查看树
    struct tree *temp;
    int NowLevel=root->Level;
    Push(root);
    while (!empty()) {
        temp = Pop();
        if(NowLevel!=temp->Level)
        {
            printf("\n");
            NowLevel=temp->Level;
        }
        printf("%d ", temp->data);  //输出队首结点
        for (int i = 0; i < TEN; i++){
            if(NowLevel<MAXLEVEL)
            {   
                if(temp->children[i])
                    Push(temp->children[i]);       
                else
                    {
                    tree *NodeNULL;
                    NodeNULL=(tree*)malloc(sizeof(tree));
                    NodeNULL->data=0;
                    NodeNULL->Level=NowLevel+1;
                    for(int j=0;j<TEN;j++)
                    {
                        NodeNULL->children[j]=NULL;
                    }
                    Push(NodeNULL);
                    }
                
                //break;
            }
            
        }
    }
}
int  number=0;
int flagfile=0;
FILE *fp=NULL;
tree *CreateTree(int Level)
{  
   
   tree *Node;
   int data;
   if(!flagfile)
    {
        flagfile=flagfile+1;
       
            if((fp=fopen("/Users/apple/Documents/Linuxhomework1/Ftree.txt", "r"))!=NULL)
                {
                        ;
                }
            else 
                printf("can't open Ftree for write\n");  
    } 
   //fseek(fp, number*sizeof(int), 0);
   number=number+1;
   //printf("number=%d\n",number );
   if(fscanf(fp,"%d ",&data)==EOF)
   {
    return Node;
   }

    if(data==0)
   {
    printf("0 ");
    Node=NULL;
    return Node;
   }
   else if(data!=0)
   {
         Node=(tree*)malloc(sizeof(tree));
         Node->data=data;
         printf("%d ",data);
         Node->Level=Level;
        for (int i = 0; i < TEN; i++)
        {
            Node->children[i] = CreateTree(Level+1);
        }   
     
   }
}
int main()
{
    tree *T;
    initilize();
    T=CreateTree(1);
    printf("TreeDone\n");
    //LevelOrderTraversal(T);
    return 0;
}
一、 内容概要 本资源提供了一个完整的“金属板材压弯成型”线性仿真案例,基于ABAQUS/Explicit或Standard求解器完成。案例精确模拟了模具(凸模、凹模)与金属板材之间的接触、压合过程,直至板材发生塑性弯曲成型。 模型特点:包含完整的模具-工件装配体,定义了刚体约束、通用接触(或面面接触)及摩擦系数。 材料定义:金属板材采用弹塑性材料模型,定义了完整的屈服强度、塑性应变等真实应力-应变数据。 关键结果:提供了成型过程中的板材应力(Mises应力)、塑性应变(PE)、厚度变化​ 云图,以及模具受力(接触力)曲线,完整再现了压弯工艺的力学状态。 二、 适用人群 CAE工程师/工艺工程师:从事钣金冲压、模具设计、金属成型工艺分析与优化的专业人员。 高校师生:学习ABAQUS线性分析、金属塑性成形理论,或从事相关课题研究的硕士/博士生。 结构设计工程师:需要评估钣金件可制造性(DFM)或预测成型回弹的设计人员。 三、 使用场景及目标 学习目标: 掌握在ABAQUS中设置金属塑性成形仿真的全流程,包括材料定义、复杂接触设置、边界条件与载荷步。 学习如何调试和分析大变形、线性接触问题的收敛性技巧。 理解如何通过仿真预测成型缺陷(如减薄、破裂、回弹),与理论或实验进行对比验证。 应用价值:本案例的建模方法与分析思路可直接应用于汽车覆盖件、电器外壳、结构件等钣金产品的冲压工艺开发与模具设计优化,减少试模成本。 四、 其他说明 资源包内包含参数化的INP文件、CAE模型文件、材料数据参考及一份简要的操作要点说明文档。INP文件便于用户直接修改关键参数(如压边力、摩擦系数、行程)进行自主研究。 建议使用ABAQUS 2022或更高版本打开。显式动力学分析(如用Explicit)对计算资源有一定要求。 本案例为教学与工程参考目的提供,用户可基于此框架进行拓展,应用于V型弯曲
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值