本文收录在推荐系统专栏,专栏系统化的整理推荐系统相关的算法和框架,并记录了相关实践经验,所有代码都已整理至推荐算法实战集合(hub-recsys)。
目录
一. FM概述
FM(Factorization Machines,因子分解机),简称FM模型,由Steffen Rendle于2010年在ICDM上提出。FM模型是一种通用的预测方法,主要有以下的特点和优势,基于此在推荐系统和计算广告领域[如: CTR预估(click-through rate)]具备良好的表现。
- 特征组合:FM实现了二阶特征交叉,无需人工也非像MLP结构是种低效率地捕获特征组合的结构。
- 引入隐向量:极大地减少模型参数,增强模型泛化能力,稀疏数据可学习。
- 线性复杂度:通过公式的转化,实现线性计算复杂度。
二. FM原理
2.1 模型推导
在正式引入FM之前,LR模型是CTR预估领域早期最成功的模型 —“线性模型+人工特征组合引入非线性”的模式。具有简单方便易解释容易上规模等诸多好处。
实际应用的场景中,大量的特征是关联的。然而线性模型是假设特征相互独立,并没有考虑到特征与特征之间的相互关系,LR中只能依靠人工特征交叉,效率不高,能否在模型层面引入特征组合的能力?<