Day32代码随想录(1刷) 贪心

文章讨论了如何通过在整数数组中进行k次取反操作,以最大化数组的和。作者提供了一种使用贪心策略的解决方案,先对数组按绝对值排序,然后根据k的值调整负数元素,计算最终和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1005. K 次取反后最大化的数组和

给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组:

  • 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。

重复这个过程恰好 k 次。可以多次选择同一个下标 i 。

以这种方式修改数组后,返回数组 可能的最大和 。

示例 1:

输入:nums = [4,2,3], k = 1
输出:5
解释:选择下标 1 ,nums 变为 [4,-2,3] 。

示例 2:

输入:nums = [3,-1,0,2], k = 3
输出:6
解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。

示例 3:

输入:nums = [2,-3,-1,5,-4], k = 2
输出:13
解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。

提示:

  • 1 <= nums.length <= 104
  • -100 <= nums[i] <= 100
  • 1 <= k <= 104

 状态:完成

思路:我这个有点偷鸡摸狗了,如果数据量多一点肯定超时了。好的做法就是先把nums按绝对值去排序然后把中间的负数取反,k--,最后看k还有多少如果偶数就直接返回原数组的和,如果基数则把第一个数取反然后返回数组的和。

class Solution {
    public int largestSumAfterKNegations(int[] nums, int k) {
        for(int i=0;i<k;i++){
            Arrays.sort(nums);
            nums[0]=-nums[0];
        }
        int sum=0;
        for(int i=0;i<nums.length;i++){
            sum+=nums[i];
        }
        return sum;
    }
}

134. 加油站

在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

给定两个整数数组 gas 和 cost ,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。

示例 1:

输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。

示例 2:

输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

提示:

  • gas.length == n
  • cost.length == n
  • 1 <= n <= 105
  • 0 <= gas[i], cost[i] <= 104

状态:一开始暴力超时了,没想出来贪心解法

思路:这题在评论区有个很好的解释,用他的话来说很棒。

有一个环形路上有n个站点; 每个站点都有一个好人或一个坏人; 好人会给你钱,坏人会收你一定的过路费,如果你带的钱不够付过路费,坏人会跳起来把你砍死; 问:从哪个站点出发,能绕一圈活着回到出发点?

首先考虑一种情况:如果全部好人给你 的钱加起来 小于 坏人收的过路费之和,那么总有一次你的钱不够付过路费,你的结局注定会被砍死。

假如你随机选一点 start 出发,那么你肯定会选一个有好人的站点开始,因为开始的时候你没有钱,遇到坏人只能被砍死;

现在你在start出发,走到了某个站点end,被end站点的坏人砍死了,说明你在 [start, end) 存的钱不够付 end点坏人的过路费,因为start站点是个好人,所以在 (start, end) 里任何一点出发,你存的钱会比现在还少,还是会被end站点的坏人砍死;

于是你重新读档,聪明的选择从 end+1点出发,继续你悲壮的征程; 终于有一天,你发现自己走到了尽头(下标是n-1)的站点而没有被砍死; 此时你犹豫了一下,那我继续往前走,身上的钱够不够你继续走到出发点Start?

当然可以,因为开始已经判断过,好人给你的钱数是大于等于坏人要的过路费的,你现在攒的钱完全可以应付 [0, start) 这一段坏人向你收的过路费。 这时候你的嘴角微微上扬,眼眶微微湿润,因为你已经知道这个世界的终极奥秘:Start就是这个问题的答案。

贪心算法要局部最优,该题的局部最优就是不能从require[i]为负的出发。

class Solution {
    public int canCompleteCircuit(int[] gas, int[] cost) {
        int totalSum=0;
        int curSum=0;
        int start=0;
        for(int i=0;i<gas.length;i++){
            curSum+=gas[i]-cost[i];
            totalSum+=gas[i]-cost[i];
            if(curSum<0){
                start=i+1;
                curSum=0;
            }
        }
        if(totalSum<0) return -1;
        return start;
    }
}

 135. 分发糖果

n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。

你需要按照以下要求,给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻两个孩子评分更高的孩子会获得更多的糖果。

请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。

示例 1:

输入:ratings = [1,0,2]
输出:5
解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。

示例 2:

输入:ratings = [1,2,2]
输出:4
解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。
     第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。

提示:

  • n == ratings.length
  • 1 <= n <= 2 * 104
  • 0 <= ratings[i] <= 2 * 104

 状态:不会做

思路:该题求得是需要准备的最少的糖果数目。相邻的两个孩子评分更高的孩子会获得更多的糖果,相同评分的孩子不一定是相等的,第二个例子就说明了,这也符合题目。

因为一次遍历要考虑左右就会很乱,所以分两次进行贪心。先让所有的右边的数字都比左边大的情况下糖果数量比右边多,这次遍历是从前向后的。然后让所有的左边数字比右边数字大的情况下糖果比左边多,这次遍历是从后向前的,因为左边数字比右边数字大是要考虑右边的数字是多少的。

class Solution {
    public int candy(int[] ratings) {
        int[] candy = new int[ratings.length];
        Arrays.fill(candy,1);
        //只考虑右边比左边大
        for(int i=1;i<ratings.length;i++){
            if(ratings[i-1]<ratings[i]){
                candy[i]=candy[i-1]+1;
            }        
        }
        
        for(int i=ratings.length-2;i>=0;i--){
            if(ratings[i]>ratings[i+1]){
                candy[i]=Math.max(candy[i],candy[i+1]+1);
            }
        }
        int sum=0;
        for(int i :candy){
            sum+=i;
        }
        return sum;
    }
}

 感想:今天的贪心有两个都没想出来,还是要多多思考。

### 代码随想录算法训练营 Day20 学习内容与作业 #### 动态规划专题深入探讨 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法[^1]。 #### 主要学习内容 - **背包问题系列** - 背包问题是典型的动态规划应用场景之一。这类题目通常涉及给定容量的背包以及一系列具有不同价值和重量的物品,目标是在不超过总容量的情况下最大化所选物品的价值。 - **状态转移方程构建技巧** - 构建合适的状态转移方程对于解决动态规划问题是至关重要的。这涉及到定义好dp数组(或表格),并找到从前一个状态到下一个状态之间的关系表达式[^2]。 - **优化空间复杂度方法** - 对于某些特定类型的DP问题,可以采用滚动数组等方式来减少所需的空间开销,从而提高程序效率[^3]。 #### 实战练习题解析 ##### 题目:零钱兑换 (Coin Change) 描述:给定不同面额的硬币 coins 和一个总金额 amount。编写函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 `-1`。 解决方案: ```python def coinChange(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float('inf'): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[-1] if dp[-1] != float('inf') else -1 ``` 此段代码实现了基于自底向上的迭代方式解决问题,其中 `dp[i]` 表示达到金额 `i` 所需最小数量的硬币数目[^4]。 ##### 题目:完全平方数 (Perfect Squares) 描述:给出正整数 n ,找出若干个不同的 完全平方数 (比如 1, 4, 9 ...)使得它们的和等于n 。问至少需要几个这样的完全平方数? 解答思路同上一题类似,只是这里的“硬币”变成了各个可能的完全平方数值。 ```python import math def numSquares(n): square_nums = set([i*i for i in range(int(math.sqrt(n))+1)]) dp = [float('inf')] *(n+1) dp[0] = 0 for i in range(1,n+1): for sq in square_nums: if i>=sq: dp[i]=min(dp[i],dp[i-sq]+1); return dp[n]; ``` 这段代码同样运用了动态规划的思想去寻找最优解路径,并利用集合存储所有小于等于输入值的最大平方根内的平方数作为候选集[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值