博客摘录「 PyTorch 深度学习实践 第8讲」2023年12月5日

1、需要mini_batch 就需要import DataSet和DataLoader

2、继承DataSet的类需要重写init,getitem,len魔法函数。分别是为了加载数据集,获取数据索引,获取数据总量。

3、DataLoader对数据集先打乱(shuffle),然后划分成mini_batch。

4、len函数的返回值 除以 batch_size 的结果就是每一轮epoch中需要迭代的次数。

5、inputs, labels = data中的inputs的shape是[32,8],labels 的shape是[32,1]。也就是说mini_batch在这个地方体现的

6、diabetes.csv数据集老师给了下载地址,该数据集需和源代码放在同一个文件夹内。

自娱自乐部分(需要后期实践)

1、将原始数据集分为训练集和测试集

2、对训练集进行批量梯度下降

3、评估测试集的准确率

import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
 
 
# 读取原始数据,并划分训练集和测试集
raw_data = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
X = raw_data[:, :-1]
y = raw_data[:, [-1]]
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,y,test_size=0.3)
Xtest = torch.from_numpy(Xtest)
Ytest = torch.from_numpy(Ytest)
 
# 将训练数据集进行批量处理
# prepare dataset
 
class DiabetesDataset(Dataset):
    def __init__(self, data,label):
 
        self.len = data.shape[0] # shape(多少行,多少列)
        self.x_data = torch.from_numpy(data)
        self.y_data = torch.from_numpy(label)
 
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]
 
    def __len__(self):
        return self.len
 
 
train_dataset = DiabetesDataset(Xtrain,Ytrain)
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True, num_workers=0) #num_workers 多线程
 
# design model using class
 
 
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 2)
        self.linear4 = torch.nn.Linear(2, 1)
        self.sigmoid = torch.nn.Sigmoid()
 
    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        x = self.sigmoid(self.linear4(x))
        return x
 
 
model = Model()
 
# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
 
 
# training cycle forward, backward, update
 
def train(epoch):
    train_loss = 0.0
    count = 0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        y_pred = model(inputs)
 
        loss = criterion(y_pred, labels)
 
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_loss += loss.item()
        count = i
 
    if epoch%2000 == 1999:
        print("train loss:", train_loss/count,end=',')
 
 
def test():
    with torch.no_grad():
        y_pred = model(Xtest)
        y_pred_label = torch.where(y_pred>=0.5,torch.tensor([1.0]),torch.tensor([0.0]))
        acc = torch.eq(y_pred_label, Ytest).sum().item() / Ytest.size(0)
        print("test acc:", acc)
 
if __name__ == '__main__':
    for epoch in range(50000):
        train(epoch)
        if epoch%2000==1999:
            test()
————————————————
版权声明:本文为优快云博主「错错莫」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/bit452/article/details/109686474

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值