Stetman读paper小记:Backdoor Learning: A Survey(Yiming Li, Yong Jiang, Zhifeng Li, Shu-Tao Xia)

本文深入探讨了深度学习中的后门攻击,包括通过中毒训练集植入后门的常见方式,以及攻击者通过改变模型权重或结构的新型攻击手段。同时,文章列举了多种防御策略,如预处理防御、模型重构和认证防御等。未来的研究方向集中在触发器设计、语义和物理后门攻击等方面。

Contents:

1.Introduction and some preliminaries

2.Classical Scenarios and Corresponding Capacities

3.Backdoor Attacks

4.Backdoor Defence

5.Future Directions

Introduction and some preliminaries

Introduction of BackDoor Learning

文章中简述了后门攻击:在训练过程中会攻击者在DNN中植入后门,使被攻击的DNN在良性样本上表现正常,而如果后门触发模式被激活,DNN的预测将会被恶意地不断改变。目前最主流最直接的方式就是通过中毒训练集(如:添加触发器)向DNN中植入后门,如图所示。除了直接毒害训练样本外,还可以通过迁移学习,直接修改模型参数,并添加额外的恶意模块来嵌入隐藏的后门。

 some preliminaries of BackDoor Learning

原文给出了一些相关概念和解释

• Benign model refers to the model trained under benign
settings.
• Infected model refers to the model with hidden back-
door(s).
• Poisoned sample is the modified training sample used in
poisoning-based backdoor attacks for embedding back-
door(s) in the model during the training process.
• Trigger is the pattern used for generating poisoned sam-
ples and activating the hidden backdoor(s).
• Attacked sample indicates the malicious testing sample
containing backdoor trigger(s).
• Attack scenario refers to the scenario that the backdoor
attack might happen. Usually, it happens when the train-
ing process is inaccessible or out of control by the user,
such as training with third-

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值