「POJ 3693」Maximum repetition substring

后缀数组详解
本文介绍了一种处理字符串问题的有效工具——后缀数组,并通过解决一个具体问题来展示其使用方法。该问题要求找出一个字符串中最大重复次数的重复子串,并要求输出字典序最小的子串。文章提供了一个详细的后缀数组实现示例,包括如何构建后缀数组、如何利用后缀数组进行查询等。

题意:求一个串的最大重复次数的重复子串,要求输出字典序最小。

后缀数组,可以看罗穗骞的论文《后缀数组——处理字符串的有力工具》。

来自《后缀数组——处理字符串的有力工具》

#include <cstdio>
#include <cstring>
#define Max(_A, _B) (_A > _B ? _A : _B)
#define Min(_A, _B) (_A < _B ? _A : _B)
#define R register
char s[100010], t[100010];
namespace Steaunk
{
    struct Suffix_Array
    {
        int sum[100010], SA[100010], x[100010], y[100010], H[100010], m, n, Log[100010], rmq[100010][18], rank[100010][18], P[100010][18];
        bool cmp(R int i, R int j, R int k){ return x[i] == x[j] && x[i + k] == x[j + k]; }
        void Swap(R int &A, R int &B){ R int t = A; A = B; B = t; }
        int Query(R int l, R int r)
        {
            l = x[l], r = x[r];
            if(l > r) Swap(l, r);
            l++;
            R int w = Log[r - l + 1];
            return Min(rmq[l][w], rmq[r - (1 << w) + 1][w]);
        }
        int Least(R int l, R int r)
        {
            R int w = Log[r - l + 1];   
            return Min(rank[l][w], rank[r - (1 << w) + 1][w]);
        }
        int Who(R int l, R int r)
        {
            R int w = Log[r - l + 1];   
            R int t = Min(rank[l][w], rank[r - (1 << w) + 1][w]);
            return t == rank[l][w] ? P[l][w] : P[r - (1 << w) + 1][w];
        }
        void main(char *S)
        {
            memset(SA, 0, sizeof(SA));
            memset(x, 0, sizeof(x));
            memset(sum, 0, sizeof(sum));
            m = 128;
            n = strlen(S + 1);
            for(R int i = 1; i <= n; i++) sum[x[i] = S[i]]++;
            for(R int i = 1; i <= m; i++) sum[i] += sum[i - 1];
            for(R int i = n; i; i--) SA[sum[x[i]]--] = i;

            for(R int i = 1; i < n; i <<= 1)
            {
                R int pos = 0;
                for(R int j = n - i + 1; j <= n; j++) y[++pos] = j;
                for(R int j = 1; j <= n; j++) if(SA[j] > i) y[++pos] = SA[j] - i;
                for(R int j = 0; j <= m; j++) sum[j] = 0;
                for(R int j = 1; j <= n; j++) sum[x[j]]++;
                for(R int j = 1; j <= m; j++) sum[j] += sum[j - 1];
                for(R int j = n; j; j--) SA[sum[x[y[j]]]--] = y[j];
                y[SA[1]] = 1;
                for(R int j = 2; j <= n; j++) y[SA[j]] = y[SA[j - 1]] + !cmp(SA[j], SA[j - 1], i);
                for(R int j = 1, t = x[j]; j <= n; x[j] = y[j], y[j++] = t);
                m = x[SA[n]];
                if(m == n) break;
            }
            memset(H, 0, sizeof(H));
            for(R int i = 1; i <= n; i++)
            {
                H[x[i]] = Max(H[x[i - 1]] - 1, 0);
                while(S[i + H[x[i]]] == S[SA[x[i] - 1] + H[x[i]]]) H[x[i]]++;
            }
            for(R int i = 2; i <= n; i++) Log[i] = Log[i >> 1] + 1;
            memset(rmq, 0, sizeof(rmq));
            memset(rank, 0, sizeof(rank));
            for(R int i = 1; i <= n; i++) rmq[i][0] = H[i];
            for(R int j = 1; j < 18; j++)
                for(R int i = 1; i <= n; i++)
                    rmq[i][j] = Min(rmq[i][j - 1], rmq[i + (1 << (j - 1))][j - 1]);
        }
        void Extra()
        {
            for(R int i = 1; i <= n; i++) rank[i][0] = x[i], P[i][0] = i;
            for(R int j = 1; j < 18; j++)
                for(R int i = 1; i <= n; i++)
                    rank[i][j] = Min(rank[i][j - 1], rank[i + (1 << (j - 1))][j - 1]),
                    P[i][j] = (rank[i][j] == rank[i][j - 1] ? 
                               P[i][j - 1] : P[i + (1 << (j - 1))][j - 1]);
        }
    } a, b; 
    int Ans, L, u;
    void main()
    {
        R int n = strlen(s + 1); L = 1, Ans = 1, u = 1; 
        for(R int i = 1; i <= n; i++) if(s[i] < s[L]) L = i;
        a.main(s), a.Extra();
        for(R int i = 1; i <= n; i++) t[i] = s[n - i + 1]; t[n] = '\0';
        b.main(t);
        for(R int i = 1; i <= n; i++)   
            for(R int j = i; j <= n; j += i)
            {
                if(s[j] != s[j - i]) continue;
                R int t1 = a.Query(j + 1 - i, j + 1), t2 = b.Query(n - j + 2, n - j + 2 + i);
                R int K = (t1 + t2 + 1) / i + 1, v = t1 + t2 + 1 + i - K * i;
                if(Ans < K) Ans = K, L = a.Who(j - t2 - i, j - t2 - i + v), u = i;
                else if(Ans == K && a.x[L] > a.Least(j - t2 - i, j - t2 - i + v)) 
                    L = a.Who(j - t2 - i, j - t2 - i + v), u = i;

            }
        for(R int i = 1; i <= Ans; i++)
            for(R int j = 1; j <= u; j++)
                printf("%c", s[L++]);
        puts("");
    }
}
int main()
{
    R int cnt = 0;
    while(scanf("%s", s + 1), s[1] != '#') 
    {
        printf("Case %d: ", ++cnt);
        Steaunk::main();
    }
    return 0;
}
<think>好的,我现在需要帮助用户找到关于POJ最大和问题的题目或解法。用户提到的是“maximum sum problem”,根据提供的引用,引用[1]里提到了POJ 1481 Maximum sum,动态规划解法。所以首先确定题目编号是1481。 接下来,用户需要解法或问题。根据引用内容,问题描述是给定一组整数,找出两个不重叠的子数组,使得它们的和最大。动态规划的方法被提到,所以需要解释如何用动态规划解决这个问题。 首先,我需要确认问题的大意:找到两个不相交的子数组,使得它们的和最大。这需要分解问题,可能分为两个步骤:先找到从左到右的最大子数组,再找到从右到左的最大子数组,或者类似的方法。 然后,动态规划的思路通常是记录当前最大和,或者前向和后向的最大值。例如,维护两个数组left和right,left[i]表示从0到i的最大子数组和,right[j]表示从j到n-1的最大子数组和。然后遍历所有可能的分割点,计算left[i] + right[i+1]的最大值。 需要确保这两个子数组不重叠,所以分割点必须满足第一个子数组结束在i,第二个开始于i+1之后。因此,可能需要两次遍历,一次从左到右,一次从右到左,存储每个位置的最大值。 然后,编写代码示例,可能使用Python。例如,先计算left数组,再计算right数组,然后遍历所有可能的分割点,找到最大的组合。需要注意数组的索引范围,避免越界。 此外,引用中提到的其他POJ题目资源,如引用[2]和[3]提供了刷题顺序,可能用户对题目难度和顺序也有兴趣,所以可以推荐这些资源,帮助用户按难度练习。 最后,生成相关问题,可能涉及动态规划的其他应用,类似的最大和问题变种,或者POJ题目的推荐顺序。确保问题与用户的需求相关,帮助他们深入理解题目和解法。</think>关于POJ 1481 Maximum sum问题的解法和题目描述如下: ### POJ 1481 Maximum sum问题描述 给定$n$个整数的集合$A=\{a_1, a_2,...,a_n\}$,定义函数$d(A)$为满足以下条件的最大和: $$ d(A) = \max\left\{ \sum_{i=s_1}^{t_1} a_i + \sum_{j=s_2}^{t_2} a_j \ \big| \ 1 \leq s_1 \leq t_1 < s_2 \leq t_2 \leq n \right\} $$ 即寻找两个**不重叠**的子数组,使得它们的和最大[^1]。 --- ### 动态规划解法 #### 核心思路 1. **预处理左右区间最大子段和**: - 用$left[i]$表示从$a_1$到$a_i$区间内的最大子段和 - 用$right[j]$表示从$a_j$到$a_n$区间内的最大子段和 2. **遍历分割点**: 对于每个分割点$k$($1 \leq k < n$),计算$left[k] + right[k+1]$的最大值 #### 算法步骤 1. 正向遍历数组,计算$left$数组(类似最大子段和) 2. 反向遍历数组,计算$right$数组 3. 遍历所有可能的分割点,求最大和 --- ### Python代码实现 ```python def max_sum(arr): n = len(arr) # 计算左半部分最大子段和 left = [0] * n current = left[0] = arr[0] for i in range(1, n): current = max(arr[i], current + arr[i]) left[i] = max(left[i-1], current) # 计算右半部分最大子段和 right = [0] * n current = right[-1] = arr[-1] for i in range(n-2, -1, -1): current = max(arr[i], current + arr[i]) right[i] = max(right[i+1], current) # 寻找最大组合 max_val = -float('inf') for k in range(n-1): max_val = max(max_val, left[k] + right[k+1]) return max_val ``` --- ### POJ题目资源推荐 1. **题目难度列表**:引用[2]提供了POJ从易到难的刷题顺序,适合循序渐进练习 2. **同类问题扩展**:可尝试POJ 2479(Maximum sum进阶版)、POJ 2593(双字段最大和变种) 3. **训练路径**:参考引用[3]的刷题顺序规划,建议先掌握基础动态规划再挑战本题 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值