第17章: BERT CommonLit Readability Prize比赛技术进阶详解

本文详细介绍了BERT CommonLit Readability Prize比赛中的技术进阶,涵盖了从数据处理、模型多样化、预训练策略到对抗训练、数据增强等各个方面,深入剖析了Transformer模型的优化技巧,包括RoBERTa参数结构、学习率调度、对抗训练的应用以及内存管理和计算效率提升策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,Data Label based on pairwise comparisions between excerpts

2,Target中数字为0的原因解析

3,文本对比中的技巧

4,target和std构成联合信息

5,Coarse Validation Loop

6,private test set

7,Hold-out validation、K-fold CV validation、Bootstrap resampling

11,Diversity of models:RoBERTa、BERT、DistilRoBERTa等联合使用

12,模型参数多样化:不同来源、不同层次的参数及Hyper parameters

13,多模型结合的training和inference时间复杂度分析

14,验证集pretraining的意义分析

15,对embeddings的size的处理

16,FFN代码分析

17,warmup数学原理及实现剖析

18,learning rate scheduler剖析

19,RoBERTa模型参数结构详解

20,Data enhancement解析和实现

21,外部数据集应该用在two-phase pretraining的具体什么阶段?

22,多样性模型背后的数学原理机制深度剖析

23,多样性数据来源背后的数学原理剖析

24,多层次数据编码数学原理分析

25,One-hot编码和Dense embeddings的巧妙结合

26,对抗网络的使用分析

27,长文本处理技巧:head+tail

28,模型训练不收敛的解决技巧:动态learning rate

29,联合使用不同类别的预训练模型作为输入的Embedding层来提高收敛速度及避免过拟合背后的数学原理剖析

30,为何concatenation的embedd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值