在大多数人根本不知道大数据(Big Data)到底是什么的时候,不可否认的是,大数据已经在 21 世纪掀起一场惊涛骇浪。
根据研究机构 IDC(国际数据资讯公司)的分析,这个世界上的资料正在以每两年就翻倍的惊人速度增加中。了解大数据、如何利用巨量资料,成了人人关心的重点议题。
尽管大数据的定义各家歧异,但基本上,大数据领域里的每个人都同意一点:大数据不仅仅是指更多资料而已。这篇文章整理出 7 个重要的大数据观点,希望大家不只是看着大数据的表皮,而能用不同的角度深入检视大数据。
1) 最基本的大数据定义 The Original Big Data
大数据的 3Vs 定义是目前为止最受推崇且最广为人知的说法。3Vs 由 Gartner 的分析师 Doug Laney 最早在 2001 年时提出,分别代表资料量 Volume、资料传输速度 Velocity、资料类型 Variety。从那之后,便有人在 3Vs 之外陆续提出更多「V」, Veracity、Validity、 Value、Visibility 等,其中又以 Veracity (真实性)最被普遍认同。
2) 大数据即科技 Big Data as Technology
大数据并不是什么崭新的概念,好几十年前 CERN 的科学家就在处理每秒上看 PB (Peta Bytes)巨量资料。那为什么一直到近几年“大数据”这颗原子弹才被投到科技圈,轰得人人叁句不离大数据?
现今要处理的资料量更庞大、资料产生跟处理速度更惊人、资料来源更多样,于是处理、储存大量资料的新技术跟工具快速发展,像是开源软体 Hadoop 跟 NoSQL 资料库。新科技诞生后,开发者跟使用者需要一个专业名词来与之前的科技作出区别,于是“大数据”一词因应而生。
因此大数据不只是指资料,也指这些用来分析、处理巨量资料的新兴科技。
“Big Data is the new tools helping us find relevant data and analyze its implications.”
3)