倒排索引技术

本文介绍了倒排索引的基本概念及其在文档检索系统中的应用。包括两种不同形式的倒排索引,即水平反向索引和单词的水平反向索引,并通过实例解释了倒排索引的构建过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

倒排索引

倒排索引非常类似我们前面提到的Hash结构。以下内容来自维基百科:

倒排索引(英语:Inverted index),也常被称为反向索引置入档案反向档案,是一种索引方法,被用来存储全文搜索下某个单词在一个文档或者一组文档中的存储位置映射。它是文档检索系统中最常用的数据结构

有两种不同的反向索引形式:

  • 一条记录的水平反向索引(或者反向档案索引)包含每个引用单词的文档的列表
  • 一个单词的水平反向索引(或者完全反向索引)又包含每个单词在一个文档中的位置。

后者的形式提供了更多的兼容性(比如短语搜索),但是需要更多的时间和空间来创建。

由上面的定义可以知道,一个倒排索引包含一个字典的索引和所有词的列表。其中字典索引中包含了所有的Term(通俗理解为文档中的词),索引后面跟的列表则保存该词的信息(出现的文档号,甚至包含在每个文档中的位置信息)。下面我们还采用上面的方法举一个简单的例子来说明倒排索引。

例如现在我们要对三篇文档建立索引(实际应用中,文档的数量是海量的):

文档1(D1):中国移动互联网发展迅速

文档2(D2):移动互联网未来的潜力巨大

文档3(D3):中华民族是个勤劳的民族

那么文档中的词典集合为:{中国,移动,互联网,发展,迅速,未来,的,潜力,巨大,中华,民族,是,个,勤劳}

建好的索引如下图:

倒排索引

倒排索引

在上面的索引中,存储了两个信息,文档号和出现的次数。建立好索引以后,我们就可以开始查询了。例如现在有一个Query是”中国移动”。首先分词得到Term集合{中国,移动},查倒排索引,分别计算query和d1,d2,d3的距离。有没有发现,倒排表建立好以后,就不需要在检索整个文档库,而是直接从字典集合中找到“中国”和“移动”,然后遍历后面的列表直接计算。

对倒排索引结构我们已经有了初步的了解,但在实际应用中还有些需要解决的问题(主要是由海量数据引起的)。笔者列举一些问题,并给出相应的解决方案,抛砖以引玉,希望大家可以展开讨论:

1.左侧的索引表如何建立?怎么做才能最高效?

可能有人不假思索回答:左侧的索引当然要采取hash结构啊,这样可以快速的定位到字典项。但是这样问题又来了,hash函数如何选取呢?而且hash是有碰撞的,但是倒排表似乎又是不允许碰撞的存在的。事实上,虽然倒排表和hash异常的相思,但是两者还是有很大区别的,其实在这里我们可以采用前面提到的Bitmap的思想,每个Term(单词)对应一个位置(当然了,这里不是一个比特位),而且是一一对应的。如何能够做到呢,一般在文字处理中,有很多的编码,汉字中的GBK编码基本上就可以包含所有用到的汉字,每个汉字的GBK编码是确定的,因此一个Term的”ID”也就确定了,从而可以做到快速定位。注:得到一个汉字的GBK号是非常快的过程,可以理解为O(1)的时间复杂度。

2.如何快速的添加删除更新索引?

有经验的码农都知道,一般在系统的“做加法”的代价比“做减法”的代价要低很多,在搜索引擎中中也不例外。因此,在倒排表中,遇到要删除一个文档,其实不是真正的删除,而是将其标记删除。这样一个减法操作的代价就比较小了。

3.那么多的海量文档,如果存储呢?有么有什么备份策略呢?

当然了,一台机器是存储不下的,分布式存储是采取的。一般的备份保存3份就足够了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值