import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torchvision import transforms, datasets
batch_size = 64
train_data = datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor(), download= True)
test_data = datasets.MNIST(root= './data/', train=True, transform=transforms.ToTensor(), download= True)
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size= batch_size, shuffle= True)
test_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size= batch_size, shuffle=True)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=10, kernel_size=5)
self.conv2 = nn.Conv2d(10,20,5)
self.conv3 = nn.Conv2d(20,40,3)
self.maxpool = nn.MaxPool2d(2)
self.fc = nn.Linear(40,10)
def forward(self,x):
input_channel=x.size(0)
x = F.relu(self.maxpool(self.conv1(x)))
x = F.relu(self.maxpool(self.conv2(x)))
x = F.relu(self.maxpool(self.conv3(x)))
x = x.view(input_channel, -1)
x = self.fc(x)
return F.log_softmax(x, dim=1)
model= Net()
print(model)
optimizer = optim.SGD(model.parameters(), lr= 0.01, momentum= 0.5)
def train(epoch):
for index, (data, target) in enumerate (train_loader): # data:[64,1,1,28] #target:[64]
output= model(data)
loss= F.nll_loss(output, target)
if index % 200 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, index * len(data), len(train_loader.dataset), 100. * index/len(train_loader), loss.item()))
optimizer.zero_grad()
loss.backward()
optimizer.step()
for epoch in range(1, 10):
train(epoch)
print("done")
pytorch小例子mnist
最新推荐文章于 2025-03-26 19:32:35 发布