Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is yes
, if 6 is a decimal number and 110 is a binary number.
Now for any pair of positive integers N1 and N2, your task is to find the radix of one number while that of the other is given.
Input Specification:
Each input file contains one test case. Each case occupies a line which contains 4 positive integers:
N1 N2 tag radix
Here N1
and N2
each has no more than 10 digits. A digit is less than its radix and is chosen from the set { 0-9, a
-z
} where 0-9 represent the decimal numbers 0-9, and a
-z
represent the decimal numbers 10-35. The last number radix
is the radix of N1
if tag
is 1, or of N2
if tag
is 2.
Output Specification:
For each test case, print in one line the radix of the other number so that the equation N1
= N2
is true. If the equation is impossible, print Impossible
. If the solution is not unique, output the smallest possible radix.
Sample Input 1:
6 110 1 10
Sample Output 1:
2
Sample Input 2:
1 ab 1 2
Sample Output 2:
Impossible
C:
/*
@Date : 2017-11-28 13:47:18
@Author : 酸饺子 (changzheng300@foxmail.com)
@Link : https://github.com/SourDumplings
@Version : $Id$
*/
/*
https://www.patest.cn/contests/pat-a-practise/1010
思路来自:
http://blog.youkuaiyun.com/baidu_25107219/article/details/46700669
这个题目算是比较DT,花了很长时间,提交次数很多,每次都会有测试点没通过,后来网上搜索了一下,有一些特俗边界条件被我们忽略。
1,首先求目标数据进制,这个进制在任何条件下面都不能小于2,最大多少呢,不能局限于36,请想象多大都是有可能的,有多大,这么大!所以必须用long long int数据类型,这个一开始一直是被遗忘的角落。
2,由于数据搜索范围太大,穷举法一个for循环显然太慢了,肯定要超时的,最终就选则二分法查找。那么问题来了,二分法查找搜索上下边界是多少呢。这个好办,目标待求字符串的最小进制一定要比它所包含字符最大值还要大1,例如N2="456ad",最大字符是'd',所以最小应该是13+1=14,,这就对了吗?当然不对万一,我输入的N2="0"呢
最大字符'0',然后0+1=1,这是不对的,最小值是2才对。那么它的上限是多少呢,上限当然不能超过另外一个数据的十进制大小,因为N2不为0情况下,最小个位数都是1,如果它的进制再超过N1的十进制数了的话,它在十进制下的数也就比N1还要大,不符合要求。
3,如果一开始,输入两个数据N2最小进制都比N1的十进制数据还要大的话,怎么办呢。N2最小进制的最大数据也就36,出现这种情况也就说明N1在十进制下肯定比36小,二分查找上限就不能是N1在十进制时候的数了,应该改为36。
几个特俗测试点容易被遗忘 0 0 1 100以及12 c 1 10
*/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
long long GetValue(char N[], int l, long long radix)
{
long long value = 0;
int i;
long long temp = 1;
for (i = l - 1; i >= 0; i--)
{
if (isdigit(N[i]))
{
value += (N[i] - '0') * temp;
}
else
{
value += ((N[i] - 'a') + 10) * temp;
}
temp *= radix;
}
return value;
}
long long FindRadix(char *given, long long value_given, char *other, int lo)
{
if (given[1] == '\0' && other[1] == '\0')
{
if (given[0] == other[0])
{
return GetValue(other, 1, 36) + 1;
}
else
{
return 0;
}
}
long long r = value_given;
long long temp = 1;
long long value_other = 0;
int i;
long long r_up = value_given + 2;
int r_down = 0;
int m;
for (i = 0; i < lo; i++)
{
m = GetValue(other+i, 1, 36);
if (m > r_down)
{
r_down = m;
}
*(other + i) = m;
}
while (r <= value_given && r > 0)
{
value_other = 0;
temp = 1;
for (i = lo - 1; i >= 0; i--)
{
value_other += other[i] * temp;
if (value_other > value_given)
{
// printf("$$This r = %lld is too large.$$\n", r);
r_up = r;
r = r / 2;
break;
}
temp *= r;
}
if (value_other == value_given)
{
if (r <= r_down)
{
r++;
if (r == r_up || r <= r_down)
{
// 说明兜了一圈了没找到,或者还是达不到下界
break;
}
}
return r;
}
else if (value_other < value_given)
{
// printf("$$This r = %lld is too small.$$\n", r);
r++;
if (r == r_up)
{
// 说明兜了一圈了没找到
break;
}
}
}
return 0;
}
int main()
{
char N1[11], N2[11];
int tag;
long long radix;
scanf("%s %s %d %lld", N1, N2, &tag, &radix);
long long value;
char *given, *other;
long long r;
int l1 = strlen(N1);
int l2 = strlen(N2);
int lo;
if (tag == 1)
{
value = GetValue(N1, l1, radix);
given = N1;
other = N2;
lo = l2;
}
else
{
value = GetValue(N2, l2, radix);
given = N2;
other = N1;
lo = l1;
}
// printf("given value is %lld\n", value);
r = FindRadix(given, value, other, lo);
if (r)
{
printf("%lld\n", r);
}
else
{
printf("Impossible\n");
}
return 0;
}