入/4 Printed Monopole Antennas for 2.45GHz

本文介绍了一种适用于nRF2401单芯片收发器及nRF2402单芯片2.4GHz发射器的四分之一波长单极天线的设计方法。该天线易于制作且可通过调整长度进行微调。文章详细阐述了这种天线的基本属性及其在低成本RF4印刷电路板上的实现。

1.Preface

Taking the demand for small size,easy fabrication and low cost into account in the developoment of low-power radion devices for short-rang 2.4GHz applications,a quarter wavelength monopole antenna implemented on the same printed circuit board as the radion module is a good solution .A printed quarter wavelength monopole antenna is very easy to design and can be tunned simply by slight changes in length.

This article presents basic guidelines on how to design such an antenna for use together with the nRF2401 Single chip Transceiver and the nRF2402 single chip 2.4GHz transmitter.

The described antenna should be fabricated on standard 1.6mm low cost RF4 printed circuit board (PCB).

2.Basic properties of a quarterwave monopole antenna

A quarterwave monopole is a ground plane dependent antenna that must be fed single-ended.The antenna must have a grount plane to be efficient.The length of the monopole PCB trace mainly determines the resonant frequency of the antenna.
Because of the very wide gain bandwidth of the quarterwave monopole,the length of the monopole PCB trace is not too critical.But like any other antenna types,the gain of a quarterwave monopole antenna will vary if parameters in the surroundings like case/box materials.distance to the ground plane,the size of the ground plane,width and thickness of the pcb trace are varied.If any of there parameters are changed,a retuning of the monopole pcb trace length may be neccessary for optimum performance in each application.

 

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值