BZOJ 2599 Race

本文介绍了一道关于点分治的经典算法题目,旨在寻找权值和为K的最短路径。通过详细的代码实现和策略说明,展示了如何确保选取的路径位于不同的子树中。

题目描述

给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000

解析:

点分治模板题,一开始有一个地方理解的不是很好,就是如何保证取的两条路径不在一个子树之内,后来一个很强很帅还能拿AU的学长告诉我可以先遍历子树但不修改子树中的点对答案的贡献,等到遍历完子树后再修改,这样可以保证取的两条路径一定不在一个子树内(因为当你更新答案的时候当前子树内的点对答案的贡献还未修改,自然无法用它来更新答案了)

代码:

#include<iostream>
#include<cstdio>
#define inf 1e9
using namespace std;
struct point
{
    int to;
    int next;
    int dis;
}e[400010];
int n,num,ans,root,sum,k;
int t[1000001],head[200010],son[200010],f[200010],d[200010],dis[200010];
bool vis[200010];
void add(int from,int to,int dis)
{
    e[++num].next=head[from];
    e[num].to=to;
    e[num].dis=dis;
    head[from]=num;
}
void getroot(int x,int fa)
{
    son[x]=1;
    f[x]=0;
    for(int i=head[x];i!=0;i=e[i].next)
    {
        int to=e[i].to;
        if(to==fa||vis[to]) continue;
        getroot(to,x);
        son[x]+=son[to];
        f[x]=max(f[x],son[to]);
    }
    f[x]=max(f[x],sum-son[x]);
    if(f[x]<f[root]) root=x;
}
void cal(int x,int fa)
{
    if(dis[x]<=k) ans=min(ans,d[x]+t[k-dis[x]]);
    for(int i=head[x];i!=0;i=e[i].next)
    {
        int to=e[i].to;
        if(to==fa||vis[to]) continue;
        d[to]=d[x]+1;
        dis[to]=dis[x]+e[i].dis;
        cal(to,x);
    }
}
void SLR(int x,int fa,bool flag)
{
    if(dis[x]<=k)
    {
        if(flag) t[dis[x]]=min(t[dis[x]],d[x]);
        else t[dis[x]]=inf;
    }
    for(int i=head[x];i!=0;i=e[i].next)
    {
        int to=e[i].to;
        if(to!=fa&&!vis[to])
            SLR(to,x,flag);
    }
}
void solve(int x)
{
    vis[x]=true;
    t[0]=0;
    for(int i=head[x];i!=0;i=e[i].next)
    {
        int to=e[i].to;
        if(vis[to]) continue;
        d[to]=1;
        dis[to]=e[i].dis;
        cal(to,0);
        SLR(to,0,1);
    }
    for(int i=head[x];i!=0;i=e[i].next)
    {
        int to=e[i].to;
        if(!vis[to])
            SLR(to,0,0);
    }
    for(int i=head[x];i!=0;i=e[i].next)
    {
        int to=e[i].to;
        if(vis[to]) continue;
        root=0;
        sum=son[to];
        getroot(to,0);
        solve(root);
    }
}
int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1;i<=k;i++) t[i]=n;
    for(int i=1;i<=n-1;i++)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        x++; y++;
        add(x,y,z);
        add(y,x,z);
    }
    ans=sum=f[0]=n;
    getroot(1,0);
    solve(root);
    if(ans!=n) printf("%d",ans);
    else printf("-1");
    return 0;
}
根据原作 https://pan.quark.cn/s/0ed355622f0f 的源码改编 野火IM解决方案 野火IM是专业级即时通讯和实时音视频整体解决方案,由北京野火无限网络科技有限公司维护和支持。 主要特性有:私有部署安全可靠,性能强大,功能齐全,全平台支持,开源率高,部署运维简单,二次开发友好,方便与第三方系统对接或者嵌入现有系统中。 详细情况请参考在线文档。 主要包括一下项目: 野火IM Vue Electron Demo,演示如何将野火IM的能力集成到Vue Electron项目。 前置说明 本项目所使用的是需要付费的,价格请参考费用详情 支持试用,具体请看试用说明 本项目默认只能连接到官方服务,购买或申请试用之后,替换,即可连到自行部署的服务 分支说明 :基于开发,是未来的开发重心 :基于开发,进入维护模式,不再开发新功能,鉴于已经终止支持且不再维护,建议客户升级到版本 环境依赖 mac系统 最新版本的Xcode nodejs v18.19.0 npm v10.2.3 python 2.7.x git npm install -g node-gyp@8.3.0 windows系统 nodejs v18.19.0 python 2.7.x git npm 6.14.15 npm install --global --vs2019 --production windows-build-tools 本步安装windows开发环境的安装内容较多,如果网络情况不好可能需要等较长时间,选择早上网络较好时安装是个好的选择 或参考手动安装 windows-build-tools进行安装 npm install -g node-gyp@8.3.0 linux系统 nodej...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值