Ignatius and the Princess III
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 22724 Accepted Submission(s): 15867
Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.
"The second problem is, given an positive integer N, we define an equation like this:
N=a[1]+a[2]+a[3]+...+a[m];
a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
4 = 4;
4 = 3 + 1;
4 = 2 + 2;
4 = 2 + 1 + 1;
4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
"The second problem is, given an positive integer N, we define an equation like this:
N=a[1]+a[2]+a[3]+...+a[m];
a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
4 = 4;
4 = 3 + 1;
4 = 2 + 2;
4 = 2 + 1 + 1;
4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
Sample Input
4 10 20
Sample Output
5 42 627
1、点击打开链接
2、点击打开链接
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int MAXN=125;
int c1[MAXN],c2[MAXN];
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=0;i<=n;i++)//初始化第一个表达式
{
c1[i]=1;
c2[i]=0;
}
for(int i=2;i<=n;i++)//从第二个表达式开始
{
for(int j=0;j<=n;j++)//每个表达式中第j个变量
{
for(int k=0;k+j<=n;k+=i)//第i个表达式都是有i^k表示的,所以这里表示的指数每次加 i;
{
c2[j+k] += c1[j]; //暴力两个表达式的所有组合,并把能组合的情况保存下;
}
}
for(int j=0;j<=n;j++) //将本次的两个表达式运算结果转存。
{
c1[j]=c2[j];
c2[j]=0;
}
}
printf("%d\n",c1[n]); //最后将下标 n 位置所存的系数输出。
}
return 0;
}
本文介绍了一个编程问题“公主III”,该问题是关于给定正整数N的不同等式的数量计算。通过一个C++代码示例展示了如何使用动态规划的方法解决这个问题,提供了完整的源代码实现。
1912

被折叠的 条评论
为什么被折叠?



