Kafka整合java代码实现生产者与消费者

1.引入pom依赖,Kafka和阿里的JSON

		<dependency>
			<groupId>org.apache.kafka</groupId>
			<artifactId>kafka-clients</artifactId>
			<version>2.8.0</version>
		</dependency>

		<dependency>
			<groupId>com.alibaba</groupId>
			<artifactId>fastjson</artifactId>
			<version>1.2.41</version>
		</dependency>

2.实现kafka的生产者

2.1异步发送kafka生产者代码实现

package com.ztesoft.kafka;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import com.alibaba.fastjson.JSON;

/**
 * kafka生产者代码
 *
 */
public class MyKafkaProducer {

	public static void main(String[] args) throws InterruptedException {
		Properties props = new Properties();
		// kafka集群,broker-list
		props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "172.21.72.166:9092");
		props.put(ProducerConfig.ACKS_CONFIG, "all");
		// 重试次数
		props.put("retries", 1);
		// 批次大小
		props.put("batch.size", 16384);
		// 等待时间
		props.put("linger.ms", 1);
		// RecordAccumulator缓冲区大小
		props.put("buffer.memory", 33554432);
		// 设置序列化
		props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
		props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

		Producer<String, String> producer = new KafkaProducer<String, String>(props);
		for (int i = 100; i < 200; i++) {
			Map<String, Object> recordMap = new HashMap<String, Object>(20);
			recordMap.put("seq", i);
			recordMap.put("name", "测试" + i);
			recordMap.put("age", i % 20);
			ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>("user_topic",
					String.valueOf(i), JSON.toJSONString(recordMap));
			producer.send(producerRecord, new Callback() {
				// 回调函数,该方法会在Producer收到ack时调用,为异步调用
				public void onCompletion(RecordMetadata metadata, Exception e) {
					String topic = metadata.topic();
					int partition = metadata.partition();
					long offset = metadata.offset();
					if (e != null) {
						System.out.printf("消息发送失败:topic=%s,offset=%d,key=%d,error=%s%n", topic, partition, offset,
								e.getMessage());

					} else {
						System.out.printf("消息发送成功:topic=%s,offset=%d,key=%d,value=%s%n", topic, partition, offset);
					}
				}
			});

			Thread.sleep(2 * 1000);

		}
		producer.close();
	}
}

2.2同步发送kafka生产者代码实现

package com.ztesoft.kafka;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutionException;

import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import com.alibaba.fastjson.JSON;

/**
 * kafka生产者代码
 *
 */
public class MyKafkaProducer {

	public static void main(String[] args) throws InterruptedException, ExecutionException {
		Properties props = new Properties();
		// kafka集群,broker-list
		props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "172.21.72.166:9092");
		props.put(ProducerConfig.ACKS_CONFIG, "all");
		// 重试次数
		props.put("retries", 1);
		// 批次大小
		props.put("batch.size", 16384);
		// 等待时间
		props.put("linger.ms", 1);
		// RecordAccumulator缓冲区大小
		props.put("buffer.memory", 33554432);
		// 设置序列化
		props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
		props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

		Producer<String, String> producer = new KafkaProducer<String, String>(props);
		for (int i = 100; i < 200; i++) {
			Map<String, Object> recordMap = new HashMap<String, Object>(20);
			recordMap.put("seq", i);
			recordMap.put("name", "测试" + i);
			recordMap.put("age", i % 20);
			ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>("user_topic",
					String.valueOf(i), JSON.toJSONString(recordMap));
			//调用get方法为同步发送返回
			producer.send(producerRecord).get();
			Thread.sleep(2 * 1000);

		}
		producer.close();
	}
}

3.实现Kafka的消费者

3.1实现kafka消费的自动提交offset

package com.ztesoft.kafka;

import java.util.Arrays;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;



public class MyKafkaConsumer {

	public static void main(String[] args) {

		Properties props = new Properties();
		// kafka地址
		props.put("bootstrap.servers", "172.21.72.166:9092");
		// 设置消费组
		props.put("group.id", "bigdata");
		// 是否自动提交
		props.put("enable.auto.commit", "true");
		// 设置自动提交时间隔
		props.put("auto.commit.interval.ms", "1000");
		// 设置消费,一般设置earliest或者latest
		props.put("auto.offset.reset", "earliest");
		// 序列化
		props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
		props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
		KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
		consumer.subscribe(Arrays.asList("user_topic"));
		while (true) {
			ConsumerRecords<String, String> records = consumer.poll(10);
			for (ConsumerRecord<String, String> record : records) {
				System.out.printf("partition = %d,offset = %d, key = %s, value = %s%n", record.partition(),
						record.offset(), record.key(), record.value());
				int partition = record.partition();
				long offset = record.offset();
				String key = record.key();
				String value = record.value();
				// 打印消费参数
				System.out.printf("partition = %d,offset = %d, key = %s, value = %s%n", partition, offset, key, value);

			}
			consumer.commitAsync();
		}
	}

}

3.2实现kafka消费的手动提交offset

package com.ztesoft.kafka;

import java.util.Arrays;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;



public class MyKafkaConsumer {

	public static void main(String[] args) {

		Properties props = new Properties();
		// kafka地址
		props.put("bootstrap.servers", "172.21.72.166:9092");
		// 设置消费组
		props.put("group.id", "bigdata");
		// 是否自动提交
		props.put("enable.auto.commit", "false");
		// 设置自动提交时间隔
		props.put("auto.commit.interval.ms", "1000");
		// 设置消费,一般设置earliest或者latest
		props.put("auto.offset.reset", "earliest");
		// 序列化
		props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
		props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
		KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
		consumer.subscribe(Arrays.asList("user_topic"));
		while (true) {
			ConsumerRecords<String, String> records = consumer.poll(10);
			for (ConsumerRecord<String, String> record : records) {
				System.out.printf("partition = %d,offset = %d, key = %s, value = %s%n", record.partition(),
						record.offset(), record.key(), record.value());
				int partition = record.partition();
				long offset = record.offset();
				String key = record.key();
				String value = record.value();
				// 打印消费参数
				System.out.printf("partition = %d,offset = %d, key = %s, value = %s%n", partition, offset, key, value);

			}
			//每次消费完数据进行异步提交
			consumer.commitAsync();
		}
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值