http://acm.hdu.edu.cn/showproblem.php?pid=2588
GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1111 Accepted Submission(s): 507
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260
分析:假设x<=n,n=p*d,x=q*d.假设n与x的最大公约数为d,则能够推出p与q肯定是互质的,因为x<=n所以要求的就是p的欧拉函数值了,那么我们就转化成求满足:n=p*d,并且d>=m的p的欧拉函数值之和。
#include<stdio.h>
#include<string.h>
int Euler(int n)
{
int ret=n,i;
for(i=2;i*i<=n;i++)
if(n%i==0)
{
ret=ret-ret/i;
while(n%i==0)
n/=i;
}
if(n>1) ret=ret-ret/n;
return ret;
}
int main()
{
int T,N,M,X,i,j,k;
__int64 sum;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&N,&M);
// for(i=M,sum=0;i<=N;i++)//这样写超时
// if(N%i==0)
// sum+=Euler(N/i);
for(i=1,sum=0;i*i<=N;i++)//这个for循环是对上面的for循环的改进。
if(N%i==0)
{
if(i>=M)
sum+=Euler(N/i);
if(i*i!=N/*如果满足i*i==N,上面的if已经加过了,所以这里要排除*/&&N/i>=M)
sum+=Euler(i);
}
printf("%I64d\n",sum);
}
return 0;
}