hdoj 1302 The Snail

本文详细介绍了如何通过计算蜗牛每天在阳光下的爬升距离和夜晚的下滑距离,结合疲劳因素,来确定蜗牛最终从6英尺深的井中逃离所需的天数。


http://acm.hdu.edu.cn/showproblem.php?pid=1302

The Snail

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1463    Accepted Submission(s): 1070


Problem Description
A snail is at the bottom of a 6-foot well and wants to climb to the top. The snail can climb 3 feet while the sun is up, but slides down 1 foot at night while sleeping. The snail has a fatigue factor of 10%, which means that on each successive day the snail climbs 10% * 3 = 0.3 feet less than it did the previous day. (The distance lost to fatigue is always 10% of the first day's climbing distance.) On what day does the snail leave the well, i.e., what is the first day during which the snail's height exceeds 6 feet? (A day consists of a period of sunlight followed by a period of darkness.) As you can see from the following table, the snail leaves the well during the third day.

Day Initial Height Distance Climbed Height After Climbing Height After Sliding
1 0 3 3 2
2 2 2.7 4.7 3.7
3 3.7 2.4 6.1 -

Your job is to solve this problem in general. Depending on the parameters of the problem, the snail will eventually either leave the well or slide back to the bottom of the well. (In other words, the snail's height will exceed the height of the well or become negative.) You must find out which happens first and on what day.
 


Input
The input file contains one or more test cases, each on a line by itself. Each line contains four integers H, U, D, and F, separated by a single space. If H = 0 it signals the end of the input; otherwise, all four numbers will be between 1 and 100, inclusive. H is the height of the well in feet, U is the distance in feet that the snail can climb during the day, D is the distance in feet that the snail slides down during the night, and F is the fatigue factor expressed as a percentage. The snail never climbs a negative distance. If the fatigue factor drops the snail's climbing distance below zero, the snail does not climb at all that day. Regardless of how far the snail climbed, it always slides D feet at night.
 


Output
For each test case, output a line indicating whether the snail succeeded (left the well) or failed (slid back to the bottom) and on what day. Format the output exactly as shown in the example.
 


Sample Input
  
6 3 1 10 10 2 1 50 50 5 3 14 50 6 4 1 50 6 3 1 1 1 1 1 0 0 0 0
 


Sample Output
  
success on day 3 failure on day 4 failure on day 7 failure on day 68 success on day 20 failure on day 2
 

题目不难,就是要注意红色的字的意思,J=(F/100)*U,以后U=U-J;而不是在前一次的上爬高度的(1-F/100)倍

#include<stdio.h>
int main()
{
	double H,U,D,F,J,sum;
	int i,j,k;
	while(scanf("%lf %lf %lf %lf",&H,&U,&D,&F)&&(H!=0||U!=0||D!=0||F!=0))
	{
		F=F/100;
		J=U*F;
		for(i=1,sum=0;;U=U-J,i++)
		{
			sum+=U;
			if(sum>H)
			{//如果第i天在白天爬了以后的总高度sum超出H,则成功 
				printf("success on day %d\n",i);
				break;
			}
			else//否则,再往下滑 
			sum-=D;
			
			if(sum<0)
			{//判断是否滑到了底 
				printf("failure on day %d\n",i);
				break;
			}
		
		}

	}
	return 0;
}

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值