套用生产线模型的Hander、Looper、Message、MessageQueue

在Android的线程通信机制模型可以套用工厂的生产线模型;
Handler:工人
Looper:机床
Message: 产品
MessageQueue: 传送带

模型图:
这里写图片描述

模型图中我们可以看见,Handler把一个一个的Message不断的post到MessageQueue中,通过Looper把Message不断的循环读取,然后再通过dispatchMessage分发至Handler的handlerMessage的回调方法中,通过这种机制,Android系统就可以源源不断的处理各种消息。

概念清楚之后从上而下分析原理就清楚得多了。

Handler

我们使用Handler一般是

    Handler mHandler = new Handler(Looper.getMainLooper());
    private void handlerTest(){
        new Thread(new Runnable() {
            @Override
            public void run() {
                //耗时操作
                mHandler.post(new Runnable() {
                    @Override
                    public void run() {
                        //UI线程 更新UI
                    }
                });
            }
        }).start();
    }

或者这样:

    Handler mHandler1 = new Handler(){
        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case 1:
                    String s = msg.obj.toString();
                    //UI线程
                    break;
            }
            super.handleMessage(msg);
        }
    };

    private void handlerTest1(){
        new Thread(new Runnable() {
            @Override
            public void run() {
                Message m = Message.obtain();
                m.what = 1;
                m.obj = "test";
                mHandler1.sendMessage(m);
            }
        }).start();
    }

其实无论是post还是通过sendMessage最终都会调用至
sendMessageAtTime 而post是对sendMessage的一次封装,为了便捷我们使用。

来看 mHandler.post

   public final boolean post(Runnable r){
       return  sendMessageDelayed(getPostMessage(r), 0);
    }
    

这里只是进行了一次包装来看看getPostMessage()

    private static Message getPostMessage(Runnable r, Object token) {
        Message m = Message.obtain();
        m.obj = token;
        m.callback = r;
        return m;
    }

其实到这一步大家就和很清楚,我们自己sendMessage其实也就是这些玩意,下面我放完代码片段。

   public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

mHandler1.sendMessage

    public final boolean sendMessage(Message msg){
        return sendMessageDelayed(msg, 0);
    }


   public final boolean sendMessageDelayed(Message msg, long delayMillis){
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

   public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

  private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }


最终是调用enqueueMessage把消息添加到MessageQueue里(后面会解释是如何添加的);
那么Handler是如何接收消息的呢?

   Handler mHandler1 = new Handler(){
        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case 1:
                    String s = msg.obj.toString();
                    //UI线程
                    break;
            }
            super.handleMessage(msg);
        }
    };

在我们使用的时候是通过handleMessage方法回调获取到发送出去的信息;在Handler有个dispatchMessage方法,字面意思已经很清楚了,这是通过分发的来获取回调的。

 
    /**
     * Subclasses must implement this to receive messages.
     */
    public void handleMessage(Message msg) {
    }
    
    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

Handler的职责其实很像一个工人,拿着未加工的产品通过机床加工后又在机床取出来,

Looper

在分析Looper之前,先来解释一个概念,
我们都知道,在工作线程中不能更新UI,这个仿佛是一个定律,其实并不是不能在工作线程更新UI,而是UI不能在不是创建它的线程更新,而UI基本上都是在UI线程创建的,
所以才会有:在工作线程中不能更新UI。
而说到Looper必须来看看Android的入口AndroidThread类中的main方法

 public static void main(String[] args) {  
        SamplingProfilerIntegration.start();  
  
        // CloseGuard defaults to true and can be quite spammy.  We  
        // disable it here, but selectively enable it later (via  
        // StrictMode) on debug builds, but using DropBox, not logs.  
        CloseGuard.setEnabled(false);  
  
        Environment.initForCurrentUser();  
  
        // Set the reporter for event logging in libcore  
        EventLogger.setReporter(new EventLoggingReporter());  
  
        Process.setArgV0("<pre-initialized>");  
		//1.初始化Looper
        Looper.prepareMainLooper();  
  
        //2. 创建ActivityThread实例  
        ActivityThread thread = new ActivityThread();  
        thread.attach(false);  
  
        if (sMainThreadHandler == null) {  
            sMainThreadHandler = thread.getHandler();  
        }  
  
        AsyncTask.init();  
  
        if (false) {  
            Looper.myLooper().setMessageLogging(new  
                    LogPrinter(Log.DEBUG, "ActivityThread"));  
        }  
		 //3.启动Loop
        Looper.loop();  
  
        throw new RuntimeException("Main thread loop unexpectedly exited");  
    }  

这里可以看见注释1、2、3分别初始化了UI线程,Looper,并且启动了Looper

Looper.prepareMainLooper

 private static Looper sMainLooper;  // guarded by Looper.class
   public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

可以看见这里首先调用了prepare方法
Looper.prepare

  static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
   
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

在准备阶段Looper对象把自己装进了ThreadLocal里;
这里大致提一下ThreadLocal,它是用于处理多线程并发操作的对象,每一个线程都会有一个ThreadLocal对象,它们只能再本线程访问。

在prepare之后可以看见一个变量

sMainLooper = myLooper();

字面意思已经很清楚了,Ui线程的Looper
Looper.myLooper

  public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

这里把存在ThreadLocal中的Looper又取了出来,所以Looper其实是和线程关联的,每一个线程对应了一个Looper。

Looper.loop

 public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

		//1.循环
        for (;;) {
	        //2.获取下一条消息
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            try {
	            //3.这里其实是就是回调handler的dispatchMessage
                msg.target.dispatchMessage(msg);
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

从这个方法看,loop其实是一个死循环,在注释2处不断的在MessageQueue.next中获取下一个需要处理的消息,在注释3出不断分发给Handler(取出产品),Looper.loop()方法就是机开关的打开的方法(Looper提供了打开方法,并没有提供关闭方法,Looper的关闭,个人觉得与线程的生命周期有关)。
所以,如果不调用Looper.loop() 那么无论handler如何post,send消息都不会有handleMessage的回调。

那么问题来了,Looper又是如何与Handler关联起来的呢?
来看看Handler的初始化函数:

public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }
		//1.这个Looper是在初始化Handler的线程的Looper
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

注释1处就是Handler关联Looper的关键了。
现在来理一理 Handler、Looper、Thread的关系,以UI线程为例:
Looper初始化时被放进Thread的局部变量ThreadLocal,取出时也通过局部变量ThreadLocal,所以Looper被关联至UI Thread,而Handler在构造函数中直接通过Looper.myLooper();取出Looper,所以取到的是UI线程的Looper,而UI线程的Looper在AndroidThread 也就是程序入口初始化。
示意图
这里写图片描述

至此Handler、Looper、Thread关系已经很清晰了。

MessageQueue

MessageQueue我们很自然的想到他会是一个map之类的集合用来保存Message,可是看见它的初始化函数的时候

  private static final String TAG = "MessageQueue";
    private static final boolean DEBUG = false;

    // True if the message queue can be quit.
    private final boolean mQuitAllowed;

    @SuppressWarnings("unused")
    private long mPtr; // used by native code

    Message mMessages;
    private final ArrayList<IdleHandler> mIdleHandlers = new ArrayList<IdleHandler>();
    private SparseArray<FileDescriptorRecord> mFileDescriptorRecords;
    private IdleHandler[] mPendingIdleHandlers;
    private boolean mQuitting;

    // Indicates whether next() is blocked waiting in pollOnce() with a non-zero timeout.
    private boolean mBlocked;

    // The next barrier token.
    // Barriers are indicated by messages with a null target whose arg1 field carries the token.
    private int mNextBarrierToken;

    private native static long nativeInit();
    private native static void nativeDestroy(long ptr);
    private native void nativePollOnce(long ptr, int timeoutMillis); /*non-static for callbacks*/
    private native static void nativeWake(long ptr);
    private native static boolean nativeIsPolling(long ptr);
    private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);

初始化参数并没有集合相关的参数,在这个类里面找到了一个Message的引用与一个返回Message 的next方法,在看完Message的类时候发现Message其实自身维护了一个链表(剧透···)。

 Message mMessages;

 Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

所以MessageQueue的职责不是对Message进行存储,而是对外提供Message这个链表的操作。

那么MessageQueue又是如何与Looper关联起来的呢?
来看看Looper的构造函数

  final MessageQueue mQueue;
  private Looper(boolean quitAllowed) {
      mQueue = new MessageQueue(quitAllowed);
      mThread = Thread.currentThread();
  }

MessageQueue在Looper的构造函数里面进行了初始化,结合Handler、Looper、Thread关系图,其实直接就与Looper绑定了;
在Looper初始化,在Handler取出

  public Handler(Callback callback, boolean async) {
          //省略...
          
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
      //省略...
    }

所以Handler、Looper、Thread、MessageQueue的关系图是这样的:
这里写图片描述

Message

在分析Message之前,我们先来思考一下,在生产线上,每个产品至少有编号、产品的具体信息,如:
一块硬盘,我想检查一下第10块硬盘的质量是否合格?
所以这2个信息是必不可少的;还记得Handler的使用代码么?

    Handler mHandler1 = new Handler(){
        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case 1:
                    String s = msg.obj.toString();
                    //UI线程
                    break;
            }
            super.handleMessage(msg);
        }
    };

    private void handlerTest1(){
        new Thread(new Runnable() {
            @Override
            public void run() {
                Message m = Message.obtain();
                m.what = 1;
                m.obj = "test";
                mHandler1.sendMessage(m);
            }
        }).start();
    }

这里的what对应的是产品编号,obj对应的是产品信息,那么Message为什么需要使用Message.obtain()来创建呢?
其实这个obtain是对Handler使用优化的一个重要方法,在Java读写文件的时候我们都会使用缓存来提高效率,而Handler作为一个线程间通信的重要方式,使用时非常频繁的,如果频繁的创建和销毁Message,导致GC不断触发是一件很耗费cpu的事情。
而Message使用链表来做了一个大小为50的池来缓存。

    Message next;

    private static final Object sPoolSync = new Object();
    private static Message sPool;
    private static int sPoolSize = 0;

    private static final int MAX_POOL_SIZE = 50;
    
    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

obtain方法先判断sPool也就是池中是否有对象存在,存在则把这个Message对象拿出来,并且把标识flags改成正在使用(注意,这里在池中获取对象,可以参考链表delete的操作,这里是把delete对象付给了新对象)
而sPool则在recycle方法中维护

 public void recycle() {
        if (isInUse()) {
            if (gCheckRecycle) {
                throw new IllegalStateException("This message cannot be recycled because it "
                        + "is still in use.");
            }
            return;
        }
        recycleUnchecked();
    }

 
    void recycleUnchecked() {
        // Mark the message as in use while it remains in the recycled object pool.
        // Clear out all other details.
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;

        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;
                sPool = this;
                sPoolSize++;
            }
        }
    }

这一段代码大致意思就是当"回收"(这个回收是指手动调用这个方法,而不是GC回收)的时候,判断池大小是否小于50,如果小于则把该对象加入链表的表头。
搞清楚Message之后那么它与MessageQueue又是如何关联起来的呢?

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
		//1.这个mQueue就是与Handler关联的mQueue
        MessageQueue queue = mQueue; 
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

在sendMessage()的方法最终都会调用到queue.enqueueMessage(msg, uptimeMillis),第一个参数就是Message,第二个参数是延时,这里我们不管;
而这个queue其实就是Handler绑定的MessageQueue,而enqueueMessage从字面意思就插入队列

 boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }
        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            /*1.我们知道Message是使用链表来维护的,
            *当mMessages为空的时候表示链表没有数据
            */
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
	            //2.把新的Message插入链表直到没有新的Message,
                //break
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

通过这个方法MessageQueue也就关联上了Message;
如果不深究到native层其实这一段代码还是很好理解的(native各种c,头都大了),插入到链表之前做了各种检查,直到确定合法,才把Message添加至链表;
Message和MessageQueue的关系和生产线的模型还是有偏差的,MessageQueue并不是Message的容器,真正的容器其实是Message自身的链表。
再来看看最开始的模型图
这里写图片描述
现在看来,是不是一目了然了呢。

总结:Hander、Looper、Message、MessageQueue的关系用代码来描述就是
Handler:负责发送信息,与回调获取信息。
Looper:消息泵,不断的读取消息集合中的的信息分发给Handler
Message:消息包装类,包装了需要发送的信息以及发送标识,同时自身是一个链表。
MessageQueue:对Message链表进行维护以及使用,对外提供Message操作的方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值