#模拟前端芯片 #MAX30009 #混频 #IQ解调 #生物阻抗测量
MAX30009测量原理总体介绍
使用MAX30009可以对生物的阻抗进行测量。其中,芯片的两个引脚可以产生正弦形式的激励,一端流经电极片,注入人体,流经人体阻抗后,通过另一端电极片流回。在这个过程中,由于生物阻抗的存在,会在流经的区域产生电势差。通过测量该电势差,再结合已知的正弦形式的激励源,可以求解得到最终的生物阻抗。生物阻抗的组成为阻抗绝对值和相角,使用正弦激励流经人体得到的电压是一个带有生物阻抗特征的正弦信号(若把人体设为Cole模型),其幅值、相位均发生了变化。得到的正弦信号需要经过解调以获得直流形式的值,方便对阻抗和相角进行计算。通过使用混频和低通滤波的方式,可以方便地实现这一点。下面将对其中的数学原理进行推导和计算。

生物阻抗测量的数学推导
给定的正弦形式的激励电流 I(t)I(t)I(t) 为:
I(t)=Aicos(2πfit+ϕi)=Re[Aiejω+ϕi]=Ai∠ϕi I(t) = A_i \cos(2\pi f_i t + \phi_i)
=Re[A_ie^{j\omega +\phi_i}]
=A_i \angle \phi_i I(t)=Aicos(2πfit+ϕi)=Re[Aiejω+ϕi]=Ai∠ϕi
其中,ω=2πfit\omega =2\pi f_itω=2πfit。电流流经生物阻抗 ZZZ,得到电压 U(t)U(t)U(t)。生物阻抗可以表示为复数形式:
Z=R(cosθ+isinθ)=R∠θ Z= R(\cos\theta + i\sin\theta) = R\angle \theta Z=R(cosθ+isinθ)=R∠θ
电压 U(t)U(t)U(t) 是电流 I(t)I(t)I(t) 和阻抗 ZZZ 的乘积,可以对电压U(t)U(t)U(t)作假设如下:
U(t)=Aucos(2πfut+ϕu)=Re[Auejω+ϕu]=Au∠ϕu
U\left( t \right) =A_u\cos \left( 2\pi f_ut+\phi _u \right) =Re\left[ A_ue^{j\omega +\phi _u} \right] =A_u\angle \phi _u
U(t)=Aucos(2πfut+ϕu)=Re[Auejω+ϕu]=Au∠ϕu
其中,由于电流流经生物阻抗其频率不发生变化,故有fi=fuf_i=f_ufi=fu;由欧姆定律,可以得到
Z=U(t)I(t)=Au∠ϕuAi∠ϕi=AuAi∠(ϕu−ϕi)
Z=\frac{U\left( t \right)}{I\left( t \right)}=\frac{A_u\angle \phi _u}{A_i\angle \phi _i}=\frac{A_u}{A_i}\angle \left( \phi _u-\phi _i \right)
Z=I(t)U(t)=Ai∠ϕiAu∠ϕu=AiAu∠(ϕu−ϕi)
故这里的阻抗绝对值RRR和相角θ\thetaθ可以得到表达式:
{R=AuAiθ=(ϕu−ϕi)
\left\{ \begin{array}{l}
R=\frac{A_u}{A_i}\\
\theta =\left( \phi _u-\phi _i \right)\\
\end{array} \right.
{R=AiAuθ=(ϕu−ϕi)
电流I(t)I(t)I(t)流经生物阻抗ZZZ得到电压U(t)U(t)U(t) ,电压U(t)U(t)U(t)将经过IQIQIQ解调(具体为方波正交解调)得到其阻抗和相位,具体如下:
首先,流经生物阻抗的电压U(t)U(t)U(t)将和一方波信号y1(t)y_1\left( t \right)y1(t)进行调制;方波信号可以作傅里叶展开如下:
y1(t)=∑n=1,3,5,...∞4Aynπsin(2πnfyt+ϕy1)
y_1\left( t \right) =\sum_{n=1,3,5,...}^{\infty}{\frac{4A_{y}}{n\pi}}\sin \left( 2\pi nf_yt+\phi _{y_1} \right)
y1(t)=n=1,3,5,...∑∞nπ4Aysin(2πnfyt+ϕy1)
这里的AyA_yAy代表方波信号的幅值,fyf_yfy代表其频率,ϕy1\phi_{y_1}ϕy1代表其相位,正常情况下对于该标准形式的方波信号,ϕy1\phi_{y_1}ϕy1为0。
当U(t)U(t)U(t)和y1(t)y_1(t)y1(t)相乘时,可以得到乘积K(t)K\left( t \right)K(t) 如:
K(t)=4AuAyπ∑n=1,3,5,...∞1nsin(2πnfyt+ϕy1)cos(2πfut+ϕu)
K\left( t \right) =\frac{4A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\sin \left( 2\pi nf_yt+\phi _{y_1} \right) \cos \left( 2\pi f_ut+\phi _u \right)
K(t)=π4AuAyn=1,3,5,...∑∞n1sin(2πnfyt+ϕy1)cos(2πfut+ϕu)
使用三角函数的乘积转化为和的公式:
{sinα⋅cosβ=12[sin(α+β)+sin(α−β)]sinα⋅sinβ=12[cos(α−β)−cos(α+β)]
\left\{ \begin{array}{l}
\sin \alpha \cdot \cos \beta =\frac{1}{2}\left[ \sin \left( \alpha +\beta \right) +\sin \left( \alpha -\beta \right) \right]\\
\sin \alpha \cdot \sin \beta =\frac{1}{2}\left[ \cos \left( \alpha -\beta \right) -\cos \left( \alpha +\beta \right) \right]\\
\end{array} \right.
{sinα⋅cosβ=21[sin(α+β)+sin(α−β)]sinα⋅sinβ=21[cos(α−β)−cos(α+β)]
可以得到
K(t)=4AuAyπ∑n=1,3,5,...∞1nsin(2πnfyt+ϕy1)cos(2πfut+ϕu)=2AuAyπ∑n=1,3,5,...∞1n(sin(2πnfyt+ϕy1+2πfut+ϕu)+sin(2πnfyt+ϕy1−2πfut+ϕu))=2AuAyπ∑n=1,3,5,...∞1n(sin(2πt(nfy+fu)+ϕy1+ϕu)+sin(2πt(nfy−fu)+ϕy1+ϕu))
K\left( t \right) =\frac{4A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\sin \left( 2\pi nf_yt+\phi _{y_1} \right) \cos \left( 2\pi f_ut+\phi _u \right) =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( \sin \left( 2\pi nf_yt+\phi _{y_1}+2\pi f_ut+\phi _u \right) +\sin \left( 2\pi nf_yt+\phi _{y_1}-2\pi f_ut+\phi _u \right) \right) =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( \sin \left( 2\pi t\left( nf_y+f_u \right) +\phi _{y_1}+\phi _u \right) +\sin \left( 2\pi t\left( nf_y-f_u \right) +\phi _{y_1}+\phi _u \right) \right)
K(t)=π4AuAyn=1,3,5,...∑∞n1sin(2πnfyt+ϕy1)cos(2πfut+ϕu)=π2AuAyn=1,3,5,...∑∞n1(sin(2πnfyt+ϕy1+2πfut+ϕu)+sin(2πnfyt+ϕy1−2πfut+ϕu))=π2AuAyn=1,3,5,...∑∞n1(sin(2πt(nfy+fu)+ϕy1+ϕu)+sin(2πt(nfy−fu)+ϕy1+ϕu))
化简得
K(t)=2AuAyπ∑n=1,3,5,...∞1n(sin(2πt(nfy+fu)+ϕy1+ϕu)+sin(2πt(nfy−fu)+ϕy1+ϕu))
K\left( t \right) =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( \sin \left( 2\pi t\left( nf_y+f_u \right) +\phi _{y_1}+\phi _u \right) +\sin \left( 2\pi t\left( nf_y-f_u \right) +\phi _{y_1}+\phi _u \right) \right)
K(t)=π2AuAyn=1,3,5,...∑∞n1(sin(2πt(nfy+fu)+ϕy1+ϕu)+sin(2πt(nfy−fu)+ϕy1+ϕu))
由于用于调制的方波y1(t)y_1\left( t \right)y1(t)的频率fyf_yfy与电压U(t)U(t)U(t)的频率fuf_ufu相同,最终得到的K(t)K\left( t \right)K(t)一定会有一个直流分量,即当n=1n=1n=1时,nfy−funf_y-f_unfy−fu恰好等于0,此时会留下一个直流分量。假如信号K(t)K\left( t \right)K(t) 在该信号经过一个频率小于fyf_yfy的低通滤波器(显然,除了直流分量之外,其余的分量最小的频率为fyf_yfy)之后,可以得到直流分量D(t)D\left( t \right)D(t) 为:
D(t)=2AuAyπsin(ϕy1+ϕu)
D\left( t \right) =\frac{2A_uA_y}{\pi}\sin \left( \phi _{y_1}+\phi _u \right)
D(t)=π2AuAysin(ϕy1+ϕu)
其中,ϕy1\phi _{y_1}ϕy1是已知量,在这里的值为0(此时的y1(t)y_1\left( t \right)y1(t)为一没有相位偏移的方波信号;方波AyA_yAy是已知量,代表方波的幅值;这个表达式包含了未知量AuA_uAu和ϕu\phi _uϕu,单从一个公式无法解出具体的值。此时,可以设一个正交的量为I1I_1I1,让已知量带入,得到I1I_1I1结果如下:
I1=π2AyD(t)=Ausin(ϕu)
I_1=\frac{\pi}{2A_y}D\left( t \right) =A_u\sin \left( \phi _u \right)
I1=2AyπD(t)=Ausin(ϕu)
除了方波正交量y1(t)y_1\left( t \right)y1(t)之外,还有另一个具有90度相位偏移的方波信号y2(t)y_2\left( t \right)y2(t),其傅里叶展开如下:
f(t)=∑n=1,3,5,...∞4Ay2nπ(−1)n−12cos(2πnfy2t)
f\left( t \right) =\sum_{n=1,3,5,...}^{\infty}{\frac{4A_{y_2}}{n\pi}}\left( -1 \right) ^{\frac{n-1}{2}}\cos \left( 2\pi nf_{\boldsymbol{y}_2}t \right)
f(t)=n=1,3,5,...∑∞nπ4Ay2(−1)2n−1cos(2πnfy2t)
该方波信号的傅里叶展开公式推导,可以参考[[具有90度相位偏移的方波信号的傅里叶级数推导]]。经过与
U(t)=Aucos(2πfut+ϕu)U\left( t \right) =A_u\cos \left( 2\pi f_ut+\phi _u \right) U(t)=Aucos(2πfut+ϕu)
的相乘,可以得到K2(t)K_2\left( t \right)K2(t)
K2(t)=4AuAy2π∑n=1,3,5,...∞1n(−1)n−12cos(2πnfy2t)cos(2πfut+ϕu)
K_2\left( t \right) =\frac{4A_uA_{y_2}}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\cos \left( 2\pi nf_{y_2}t \right) \cos \left( 2\pi f_ut+\phi _u \right)
K2(t)=π4AuAy2n=1,3,5,...∑∞n1(−1)2n−1cos(2πnfy2t)cos(2πfut+ϕu)
通过积化和差公式
{cosαcosβ=12[cos(α+β)+cos(α−β)]sinαsinβ=−12[cos(α+β)−cos(α−β)]
\left\{ \begin{array}{l}
\cos \alpha \cos \beta =\frac{1}{2}\left[ \cos \left( \alpha +\beta \right) +\cos \left( \alpha -\beta \right) \right]\\
\sin \alpha \sin \beta =-\frac{1}{2}\left[ \cos \left( \alpha +\beta \right) -\cos \left( \alpha -\beta \right) \right]\\
\end{array} \right.
{cosαcosβ=21[cos(α+β)+cos(α−β)]sinαsinβ=−21[cos(α+β)−cos(α−β)]
可以得到K2(t)K_2\left( t \right)K2(t) 如
K2(t)=4AuAy2π∑n=1,3,5,...∞1n(−1)n−12cos(2πnfy2t)cos(2πfut+ϕu)=2AuAyπ∑n=1,3,5,...∞1n(−1)n−12[cos(2πnfy2t+2πfut+ϕu)+cos(2πnfy2t−(2πfut+ϕu))]=2AuAyπ∑n=1,3,5,...∞1n(−1)n−12[cos(2πt(nfy2+fu)+ϕu)+cos(2πt(nfy2−fu)−ϕu)]
K_2\left( t \right) =\frac{4A_uA_{y_2}}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\cos \left( 2\pi nf_{y_2}t \right) \cos \left( 2\pi f_ut+\phi _u \right) =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\left[ \cos \left( 2\pi nf_{y_2}t+2\pi f_ut+\phi _u \right) +\cos \left( 2\pi nf_{y_2}t-\left( 2\pi f_ut+\phi _u \right) \right) \right] =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\left[ \cos \left( 2\pi t\left( nf_{y_2}+f_u \right) +\phi _u \right) +\cos \left( 2\pi t\left( nf_{y_2}-f_u \right) -\phi _u \right) \right]
K2(t)=π4AuAy2n=1,3,5,...∑∞n1(−1)2n−1cos(2πnfy2t)cos(2πfut+ϕu)=π2AuAyn=1,3,5,...∑∞n1(−1)2n−1[cos(2πnfy2t+2πfut+ϕu)+cos(2πnfy2t−(2πfut+ϕu))]=π2AuAyn=1,3,5,...∑∞n1(−1)2n−1[cos(2πt(nfy2+fu)+ϕu)+cos(2πt(nfy2−fu)−ϕu)]
化简可得其表达式为
K2(t)=2AuAy2π∑n=1,3,5,...∞1n(−1)n−12[cos(2πt(nfy2+fu)+ϕu)+cos(2πt(nfy2−fu)−ϕu)]
K_2\left( t \right) =\frac{2A_uA_{y_2}}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\left[ \cos \left( 2\pi t\left( nf_{y_2}+f_u \right) +\phi _u \right) +\cos \left( 2\pi t\left( nf_{y_2}-f_u \right) -\phi _u \right) \right]
K2(t)=π2AuAy2n=1,3,5,...∑∞n1(−1)2n−1[cos(2πt(nfy2+fu)+ϕu)+cos(2πt(nfy2−fu)−ϕu)]
同理,上式也存在一个直流分量。当且仅当n=1\text{n}=1n=1时,由于fy2=fuf_{y_2}=f_ufy2=fu,故此时可以得到该直流分量为:
D2(t)=2AuAy2πcos(ϕu)
D_2\left( t \right) =\frac{2A_uA_{y_2}}{\pi}\cos \left( \phi _u \right)
D2(t)=π2AuAy2cos(ϕu)
方波Ay2A_{y_2}Ay2是已知量,与AyA_yAy相同,代表方波的幅值。故可以设Q1Q_1Q1值如下
Q1=π2AyD2(t)=Aucos(ϕu)
Q_1=\frac{\pi}{2A_y}D_2\left( t \right) =A_u\cos \left( \phi _u \right)
Q1=2AyπD2(t)=Aucos(ϕu)
由这里的I1I_1I1和Q1Q_1Q1的值可以计算得到未知量AuA_uAu和ϕu\phi _uϕu,如下
{Au=I12+Q12ϕu=arctan(I1Q1)
\left\{ \begin{array}{l}
A_u=\sqrt{I_{1}^{2}+Q_{1}^{2}}\\
\phi _u=\arctan \left( \frac{I_1}{Q_1} \right)\\
\end{array} \right.
{Au=I12+Q12ϕu=arctan(Q1I1)
5255





