5. 最长回文子串(114)
代码实现(思路看题解)
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 1));
// int maxLen = 1;
// the first loop is based on len of the substr
for (int k = 2; k <= n; k++) {
// the second loop is based on cols
for (int i = 0; i <= n - k; i++) {
// number of row
int j = i + k - 1;
// if k is 2, judge wheter two characters are equal
if (k == 2 && s[i] == s[j]) dp[i][j] = 2;
// else
else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
if (s[i] == s[j]) {
dp[i][j] = max(dp[i + 1][j - 1] + 2, dp[i][j]);
}
}
// maxLen = max(maxLen, dp[i][j]);
}
}
return dp[0][n - 1];
}
};
516. 最长回文子序列(115)
代码实现(首刷自解)
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 1));
// int maxLen = 1;
// the first loop is based on len of the substr
for (int k = 2; k <= n; k++) {
// the second loop is based on cols
for (int i = 0; i <= n - k; i++) {
// number of row
int j = i + k - 1;
// if k is 2, judge wheter two characters are equal
if (k == 2 && s[i] == s[j]) dp[i][j] = 2;
// else
else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
if (s[i] == s[j]) {
dp[i][j] = max(dp[i + 1][j - 1] + 2, dp[i][j]);
}
}
// maxLen = max(maxLen, dp[i][j]);
}
}
return dp[0][n - 1];
}
};