FOJ Problem 2218 Simple String Problem

本文探讨了一个关于字符串理论的问题,要求从给定的字符串中找到两个不包含相同字母的子串,并求得这两个子串长度的最大乘积。介绍了输入输出格式及样例,并提供了AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Recently, you have found your interest in string theory. Here is an interesting question about strings.

You are given a string S of length n consisting of the first k lowercase letters. 

You are required to find two non-empty substrings (note that substrings must be consecutive) of S, such that the two substrings don't share any same letter. Here comes the question, what is the maximum product of the two substring lengths?

 Input
The first line contains an integer T, meaning the number of the cases. 1 <= T <= 50.

For each test case, the first line consists of two integers n and k. (1 <= n <= 2000, 1 <= k <= 16).

The second line is a string of length n, consisting only the first k lowercase letters in the alphabet. For example, when k = 3, it consists of a, b, and c.

 Output

For each test case, output the answer of the question.

 Sample Input

4
25 5
abcdeabcdeabcdeabcdeabcde
25 5
aaaaabbbbbcccccdddddeeeee
25 5
adcbadcbedbadedcbacbcadbc
3 2

aaa Sample Output

 

6
150
21

0

 

AC代码:

 

# include <stdio.h>
# include <string.h> 
# include <algorithm>
using namespace std;
int w[20], dp[1<<17];
char s[2010];
int main(){
	int i, j, k, n, t, l, status;
	for(i=0; i<16; i++)
	w[i]=(1<<i);
	scanf("%d", &t);
	while(t--){
		memset(dp, 0, sizeof(dp));
		scanf("%d%d", &l, &k);
		getchar();
		scanf("%s", s);
		for(i=0; i<l; i++){
			status=0;
			for(j=i; j<l; j++){
				status=(status|w[s[j]-'a']);
				dp[status]=max(dp[status], j-i+1);
			}
		}
		int end=(1<<k)-1;
		for(i=0; i<=end; i++){
			for(j=0; j<k; j++){
				if(i&w[j])
				dp[i]=max(dp[i], dp[i^w[j]]);
			}
		}
		int Max=0;
		for(i=1; i<end; i++)
		Max=max(dp[i]*dp[(1<<k)-1-i], Max);  
		printf("%d\n", Max);
	}
	return 0;
}


 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值