codeforces C. Buns

本文介绍了一种解决多重背包问题的方法,并通过一个具体例子详细解释了如何将其转换为0-1背包问题进行求解的过程。文章提供了一份AC代码,演示了如何通过动态规划算法来实现这一转换,并最终找到最大收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lavrenty, a baker, is going to make several buns with stuffings and sell them.

Lavrenty has n grams of dough as well as m different stuffing types. The stuffing types are numerated from 1 to m. Lavrenty knows that he has ai grams left of the i-th stuffing. It takes exactly bi grams of stuffing i and ci grams of dough to cook a bun with the i-th stuffing. Such bun can be sold for di tugriks.

Also he can make buns without stuffings. Each of such buns requires c0 grams of dough and it can be sold for d0 tugriks. So Lavrenty can cook any number of buns with different stuffings or without it unless he runs out of dough and the stuffings. Lavrenty throws away all excess material left after baking.

Find the maximum number of tugriks Lavrenty can earn.

Input
The first line contains 4 integers n, m, c0 and d0 (1 ≤ n ≤ 1000, 1 ≤ m ≤ 10, 1 ≤ c0, d0 ≤ 100). Each of the following m lines contains 4 integers. The i-th line contains numbers ai, bi, ci and di (1 ≤ ai, bi, ci, di ≤ 100).

Output

Print the only number — the maximum number of tugriks Lavrenty can earn.

 

这是一道多重背包问题,可以转化为0-1背包求解,朴素的转化复杂度高,但这题数据范围不是很大可以过。

dp[i][j]表示用i去装前j件物品的最大值,转化后跟平时做的0-1背包是一样的;这边c0的dough可以有d0的tugriks,其实意思就是

dp是有初值的,就是不取物品也是有值的。

 

AC代码:

 

# include <stdio.h>
# include <iostream>
# include <string.h>
# include <algorithm>
# include <queue>
using namespace std;
typedef long long int ll;
struct stuff{
	int c, w, v;
};
stuff s[100010];
int dp[1010][10010];
int main(){
	int i, j, k, m, n, c0, d0;
	int a, b, c, d;
	int cnt=1;
	scanf("%d%d%d%d", &n, &m, &c0, &d0);
	for(i=1; i<=m; i++){
		scanf("%d%d%d%d", &a, &b, &c, &d);
		int temp=a/b;
		for(j=1; j<=temp; j++){
			s[cnt].c=c;
			s[cnt].v=d;
			s[cnt].w=b;
			cnt++;
		}
	}
	for(i=1; i<=n; i++){
		for(j=0; j<=cnt-1; j++){
			dp[i][j]=i/c0*d0;
		}
	}
	for(i=1; i<=n; i++){
		for(j=1; j<=cnt-1; j++){
			dp[i][j]=max(dp[i][j], dp[i][j-1]);
			if(i>=s[j].c){
				dp[i][j]=max(dp[i][j], dp[i-s[j].c][j-1]+s[j].v);
			}
		}
	}
	printf("%d", dp[n][cnt-1]);
	return 0;
}

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值