[论文精读]U-Net: Convolutional Networks for BiomedicalImage Segmentation

论文原文:U-Net: Convolutional Networks for Biomedical Image Segmentation (arxiv.org)

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

目录

1. 原文逐段精读

1.1. Abstract

1.2. Introduction

1.3. Network Architecture

1.4. Training

1.4.1. Data Augmentation

1.5. Experiments

1.6. Conclusion

2. 代码

3. 知识补充

3.1. Bicubic interpolation

4. Reference List


1. 原文逐段精读

1.1. Abstract

        ①Reasonable use of annotation samples

        ②"The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization"

        ③This model is for segmenting neuronal structures in electron microscopic stacks

        ④This model peforms great in small training sample 

1.2. Introduction

        ①The expectations for machine learning and deep learning in medicine often lie not in classification accuracy, but in region segmentation and other aspects

        ②They consider the sliding-window model by Ciresan et al. as slow in training and inaccuracy brought by maxpooling

        ③⭐U-Net takes upsampling instead of pooling

        ④什么重叠贴图策略??我没能明白,为啥这样就能预测

        ⑤They use elastic deformations to augment there data, which keeps the invariance

1.3. Network Architecture

        ①The whole framework: 

        ②3*3 convolutions include no padding

        ③Stride of maxpooling is 2

        ④Double the number of channels when downsampling

        ⑤Up-conv 2*2 halves the number of feature channels

1.4. Training

        ①Momentum: 0.99

        ②Softmax function: 

p_{k}(\mathbf{x})=\exp(a_{k}(\mathbf{x}))/\left(\sum_{k^{\prime}=1}^{K}\exp(a_{k^{\prime}}(\mathbf{x}))\right)

where a_{k}\left ( \textbf{x} \right ) is activation in the k feature channel at the \textbf{x} pixel position

        ③Cross entropy function: 

E=\sum_{\mathbf{x}\in\Omega}w(\mathbf{x})\log(p_{\ell(\mathbf{x})}(\mathbf{x}))

where \ell\in \left \{ 1,...,K \right \} denotes true label of every pixel, w denotes weight map

        ④Weight map:

w(\mathbf{x})=w_c(\mathbf{x})+w_0\cdot\exp\left(-\frac{(d_1(\mathbf{x})+d_2(\mathbf{x}))^2}{2\sigma^2}\right)

where w_{c} is balacing weight map, d_{1} denotes the distance to the nearest cell border, d_{2} denotes  the distance to the second nearest cell border

        ⑤Initialization: w_{0}=10, \sigma \approx 5

        ⑥Setting of weights: standard deviation is \sqrt{\frac{2}{N}}, where N is the number of incoming nodes of one neuron

1.4.1. Data Augmentation

        ①Shift and rotation invariance are needed for robustness, especially random elastic deformations of the training samples are important to segmentation

        ②"They generate smooth deformations using random displacement vectors on a coarse 3 by 3 grid"

        ③Then compute bicubic interpolation to get per-pixel displacements

1.5. Experiments

        ①Segmentation tasks: segementing neurons in electron microscopic recordings and light microscopic images and 

        ②Dataset: EM segmentation challenge

        ③Evaluation criteria: warping error, Rand error and pixel error

        ④The ranking of the EM challenge:

        ⑤The accuracy of ell segmentation task in light microscopic images:

1.6. Conclusion

        There is small sample needed for U-Net. In addition, it has short training time and high accuracy.

2. 代码

相关链接:深度学习-UNet - 知乎 (zhihu.com)

3. 知识补充

3.1. Bicubic interpolation

(1)相关链接1:最近邻插值、双线性插值与双三次插值 - 知乎 (zhihu.com)

(2)相关链接2:双三次插值(BiCubic插值)-优快云博客

4. Reference List

Ronneberger, O., Fischer, P. & Brox, T. (2015) 'U-Net: Convolutional Networks for Biomedical Image Segmentation', MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp 234–241. doi: U-Net: Convolutional Networks for Biomedical Image Segmentation | SpringerLink 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值