No.103 - LeetCode101 - 判断二叉树镜像 - 直接DFS即可

本文介绍了一种用于判断二叉树是否对称的深度优先搜索(DFS)算法。通过对二叉树节点进行递归比较,确保左子树是右子树的镜像,从而实现对称性验证。算法首先检查根节点,然后递归地比较左右子树的值和结构。
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool dfs(TreeNode* L,TreeNode* R){
        if(L->val != R->val) return false;
        bool ans = true;
        if(L->left != NULL && R->right != NULL) ans=ans&&dfs(L->left,R->right);
        if((L->left == NULL && R->right != NULL) || 
           (L->left != NULL && R->right == NULL)) return false;
        
        if(L->right != NULL && R->left != NULL) ans=ans&&dfs(L->right,R->left);
        if((L->right == NULL && R->left != NULL) || 
           (L->right != NULL && R->left == NULL)) return false;
        return ans;
    }
    bool isSymmetric(TreeNode* root) {
        if(root == NULL) return true;
        if(root->left == NULL && root->right == NULL) return true;
        if(root->left != NULL && root->right != NULL) return dfs(root->left,root->right);
        return false;
    }
};
内容概要:本文介绍了基于Koopman算子理论的模型预测控制(MPC)方法,用于非线性受控动力系统的状态估计与预测。通过将非线性系统近似为线性系统,利用数据驱动的方式构建Koopman观测器,实现对系统动态行为的有效建模与预测,并结合Matlab代码实现具体仿真案例,展示了该方法在处理复杂非线性系统中的可行性与优势。文中强调了状态估计在控制系统中的关键作用,特别是面对不确定性因素时,Koopman-MPC框架能够提供更为精确的预测性能。; 适合人群:具备一定控制理论基础和Matlab编程能力的研【状态估计】非线性受控动力系统的线性预测器——Koopman模型预测MPC(Matlab代码实现)究生、科研人员及从事自动化、电气工程、机械电子等相关领域的工程师;熟悉非线性系统建模与控制、对先进控制算法如MPC、状态估计感兴趣的技术人员。; 使用场景及目标:①应用于非线性系统的建模与预测控制设计,如机器人、航空航天、能源系统等领域;②用于提升含不确定性因素的动力系统状态估计精度;③为研究数据驱动型控制方法提供可复现的Matlab实现方案,促进理论与实际结合。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注Koopman算子的构造、观测器设计及MPC优化求解部分,同时可参考文中提及的其他相关技术(如卡尔曼滤波、深度学习等)进行横向对比研究,以深化对该方法优势与局限性的认识。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值