如何让你的RAG应用返回来源

在问答应用程序中,向用户展示生成答案所用的来源信息非常重要。实现这一功能的最简单方式是让链条返回每次生成中检索到的文档。本篇文章将以我们在RAG教程中通过Lilian Weng的《LLM Powered Autonomous Agents》博客构建的Q&A应用为基础,讨论以下两种方法:

  1. 使用内置的create_retrieval_chain,它默认返回来源。
  2. 使用一个简单的LCEL实现,以展示操作原理。

此外,我们还将展示如何将来源信息结构化到模型响应中,使模型可以报告其在生成答案时使用了哪些具体来源。

依赖设置

我们将使用OpenAI嵌入和Chroma向量存储,但这里展示的内容可以与任何Embeddings、VectorStore或Retriever一起使用。需要安装以下软件包:

%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-openai langchain-chroma bs4

需要设置环境变量OPENAI_API_KEY,可以直接设置或从.env文件中加载:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

# import dotenv
# dotenv.load_dotenv()

使用create_retrieval_chain

首先我们选择一个LLM(大语言模型):

pip install -qU langchain-openai

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4o-mini")

以下是我们在RAG教程中基于Lilian Weng的博客构建的带有来源展示的Q&A应用示例:

import bs4
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_chroma import Chroma
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

# 1. Load, chunk and index the contents of the blog to create a retriever.
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()

# 2. Incorporate the retriever into a question-answering chain.
system_prompt = (
    "You are an assistant for question-answering tasks. "
    "Use the following pieces of retrieved context to answer "
    "the question. If you don't know the answer, say that you "
    "don't know. Use three sentences maximum and keep the "
    "answer concise."
    "\n\n"
    "{context}"
)

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        ("human", "{input}"),
    ]
)

question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)

result = rag_chain.invoke({"input": "What is Task Decomposition?"})

在结果中,"context"包含了LLM在生成"answer"时使用的来源。

自定义LCEL实现

下面我们构造一个与create_retrieval_chain类似的链。这个实现通过构建字典逐步实现功能:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

rag_chain_from_docs = (
    {
        "input": lambda x: x["input"],  # input query
        "context": lambda x: format_docs(x["context"]),  # context
    }
    | prompt  # format query and context into prompt
    | llm  # generate response
    | StrOutputParser()  # coerce to string
)

retrieve_docs = (lambda x: x["input"]) | retriever

chain = RunnablePassthrough.assign(context=retrieve_docs).assign(
    answer=rag_chain_from_docs
)

chain.invoke({"input": "What is Task Decomposition"})

将来源结构化到模型响应中

到目前为止,我们只是简单地将检索步骤返回的文档传递到了最终响应中。然而,这可能无法具体说明模型在生成答案时依赖了哪些信息。接下来,我们展示如何将来源信息结构化到模型响应中,使模型报告其确切依赖的上下文。

from typing import List
from langchain_core.runnables import RunnablePassthrough
from typing_extensions import Annotated, TypedDict

# Desired schema for response
class AnswerWithSources(TypedDict):
    answer: str
    sources: Annotated[List[str], ..., "List of sources (author + year) used to answer the question"]

# Our rag_chain_from_docs has the following changes:
rag_chain_from_docs = (
    {
        "input": lambda x: x["input"],
        "context": lambda x: format_docs(x["context"]),
    }
    | prompt
    | llm.with_structured_output(AnswerWithSources)
)

retrieve_docs = (lambda x: x["input"]) | retriever

chain = RunnablePassthrough.assign(context=retrieve_docs).assign(
    answer=rag_chain_from_docs
)

response = chain.invoke({"input": "What is Chain of Thought?"})

import json

print(json.dumps(response["answer"], indent=2))

这样,模型可以清楚地报告其在回答问题时依赖的具体来源信息。

如果遇到问题欢迎在评论区交流。
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值