### 添加 ShuffleNetV2 到 YOLOv5 的方法
为了将 ShuffleNetV2 集成到 YOLOv5 中,需要对 YOLOv5 的主干网络部分进行替换或扩展。以下是具体的方法和架构修改的内容:
#### 1. 替换主干网络
YOLOv5 默认使用的主干网络是 CSPDarknet53 或其他变体。要将其替换为 ShuffleNetV2,需完成以下操作:
- **导入 ShuffleNetV2 模型**:首先需要实现 ShuffleNetV2 的代码逻辑,并确保它可以作为独立的模块运行[^1]。
- **调整输入/输出维度匹配**:ShuffleNetV2 输出的特征图尺寸应与 YOLOv5 后续层(如颈部和头部)所需的输入一致。
#### 2. 修改配置文件
YOLOv5 使用 YAML 文件定义模型结构。可以通过编辑 `yolov5/models/yolo*.yaml` 来指定新的主干网络:
```yaml
backbone:
# Replace with ShuffleNetV2 configuration
[[-1, ShuffleNetV2, [output_channels]]]
neck:
...
head:
...
```
上述代码片段中的 `-1` 表示前一层索引,而 `ShuffleNetV2` 是自定义模块名称。需要在 Python 实现中注册该模块以便加载[^2]。
#### 3. 自定义模块实现
创建一个新的 Python 脚本(例如 `models/custom_modules.py`),其中包含 ShuffleNetV2 的 PyTorch 实现。以下是简化版的核心代码示例:
```python
import torch.nn as nn
class ChannelShuffle(nn.Module):
def __init__(self, groups):
super(ChannelShuffle, self).__init__()
self.groups = groups
def forward(self, x):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // self.groups
# reshape
x = x.view(batchsize, self.groups, channels_per_group, height, width)
# transpose
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batchsize, -1, height, width)
return x
class ShuffleUnit(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, groups=2):
super(ShuffleUnit, self).__init__()
self.stride = stride
self.in_channels = in_channels
self.out_channels = out_channels
self.groups = groups
if stride != 1 or in_channels != out_channels:
self.residual = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1,
stride=stride, groups=in_channels, bias=False),
nn.BatchNorm2d(in_channels),
nn.Conv2d(in_channels, int(out_channels / 2), kernel_size=1, bias=False),
nn.BatchNorm2d(int(out_channels / 2)),
nn.ReLU(inplace=True),
)
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1,
stride=stride, groups=in_channels, bias=False),
nn.BatchNorm2d(in_channels),
nn.Conv2d(in_channels, int(out_channels / 2), kernel_size=1, bias=False),
nn.BatchNorm2d(int(out_channels / 2)),
nn.ReLU(inplace=True),
)
else:
self.shortcut = None
self.shuffle = ChannelShuffle(groups)
def forward(self, x):
if self.stride == 1 and self.in_channels == self.out_channels:
shortcut = x[:, :(self.out_channels // 2), :, :]
residual = x[:, (self.out_channels // 2):, :, :]
else:
shortcut = self.shortcut(x) if self.shortcut is not None else x
residual = self.residual(x)
result = torch.cat((shortcut, residual), dim=1)
result = self.shuffle(result)
return result
class ShuffleNetV2(nn.Module):
def __init__(self, stages_repeats=[4, 8, 4], stages_out_channels=[24, 116, 232, 464]):
super(ShuffleNetV2, self).__init__()
assert len(stages_repeats) == 3 and len(stages_out_channels) == 4
input_channels = 3
output_channels = stages_out_channels[0]
self.conv1 = nn.Sequential(
nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(inplace=True),
)
input_channels = output_channels
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
stage_names = ['stage{}'.format(i) for i in range(len(stages_repeats))]
blocks = []
for name, repeats, output_channels in zip(stage_names, stages_repeats, stages_out_channels[1:]):
seq = [ShuffleUnit(input_channels, output_channels, stride=2)]
for _ in range(repeats - 1):
seq.append(ShuffleUnit(output_channels, output_channels))
blocks.append(nn.Sequential(*seq))
input_channels = output_channels
self.stages = nn.Sequential(*blocks)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool(x)
x = self.stages(x)
return x
```
此代码实现了 ShuffleNetV2 的基本单元及其整体框架。可以进一步优化以适配 YOLOv5 的需求。
#### 4. 注册新模块
为了让 YOLOv5 加载自定义模块,在 `models/common.py` 中添加如下内容:
```python
from models.custom_modules import ShuffleNetV2
def parse_model(d, ch):
# ... existing code ...
elif m == 'ShuffleNetV2':
c_ = d['c']
arguments = {'stages_repeats': [4, 8, 4],
'stages_out_channels': [ch[-1], *list(map(lambda x: x*c_, [116, 232, 464]))]}
module = ShuffleNetV2(**arguments)
# ... existing code ...
```
这样即可支持通过 YAML 文件调用 ShuffleNetV2。
---
###