B - Prime Ring Problem
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Inputn (0 < n < 20).
OutputThe output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions
in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
You are to write a program that completes above process.
Print a blank line after each case.
6
8
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
#include<stdio.h>
#include<string.h>
int m,n;
int a[5000],book[5000];
int p[100]={0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,
1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1};
void dsf(int x,int y)
{
int i,flag=0,t;
for(i=2;i<=y;i++)
{
if(book[i]==0&&p[i+a[x-1]]==1)
{
a[x]=i;
book[i]=1;
dsf(x+1,y);
book[i]=0;
}
}
if(x==y)
{
if(x==y&&p[a[0]+a[y-1]]==1)
{
printf("%d",a[0]);
for(i=1;i<y;i++)
{
printf(" %d",a[i]);
}
printf("\n");
}
return ;
}
return ;
}
int main()
{
int i,j,k,t;
t=1;
while(scanf("%d",&n)!=EOF)
{
printf("Case %d:\n",t++);
memset(book,0,sizeof(book));
a[0]=1;
dsf(1,n);
printf("\n");
}
return 0;
}
#include<stdio.h>
#include<string.h>
int m,n;
int a[5000],book[5000];
int p[100]={0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,
1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1};
void dsf(int x,int y)
{
int i,flag=0,t;
for(i=2;i<=y;i++)
{
if(book[i]==0&&p[i+a[x-1]]==1)
{
a[x]=i;
book[i]=1;
dsf(x+1,y);
book[i]=0;
}
}
if(x==y)
{
if(x==y&&p[a[0]+a[y-1]]==1)
{
printf("%d",a[0]);
for(i=1;i<y;i++)
{
printf(" %d",a[i]);
}
printf("\n");
}
return ;
}
return ;
}
int main()
{
int i,j,k,t;
t=1;
while(scanf("%d",&n)!=EOF)
{
printf("Case %d:\n",t++);
memset(book,0,sizeof(book));
a[0]=1;
dsf(1,n);
printf("\n");
}
return 0;
}
本文介绍了一个名为B-PrimeRing的问题,该问题要求将1至n的自然数放置于n个圆环中,使得相邻两圆环内的数字之和为质数。文章提供了一段C语言代码,用于解决此问题,并展示了如何通过递归深度优先搜索来找出所有可能的解决方案。
186

被折叠的 条评论
为什么被折叠?



