1 wait/sleep的区别
-
来自不同的类
wait => Object
sleep => Thread
一般情况企业中使用休眠是:
TimeUnit.DAYS.sleep(1); //休眠1天 TimeUnit.SECONDS.sleep(1); //休眠1s
-
关于锁的释放
wait 会释放锁;
sleep睡觉了,不会释放锁;
-
使用的范围是不同的
wait 必须在同步代码块中;
sleep 可以在任何地方睡;
-
是否需要捕获异常
wait是不需要捕获异常;
sleep必须要捕获异常;
2 Lock
传统的Synchronized
/**
* 真正的多线程开发
* 线程就是一个单独的资源类,没有任何的附属操作!
*/
public class SaleTicketDemo01 {
public static void main(String[] args) {
//多线程操作
//并发:多线程操作同一个资源类,把资源类丢入线程
Ticket ticket = new Ticket();
//@FunctionalInterface 函数式接口 jdk1.8之后 lambda表达式
new Thread(()->{
for(int i=0;i<40;i++){
ticket.sale();
}
},"A").start();
new Thread(()->{
for(int i=0;i<40;i++){
ticket.sale();
}
},"B").start();
new Thread(()->{
for(int i=0;i<40;i++){
ticket.sale();
}
},"C").start();
}
}
//资源类
//属性+方法
//oop
class Ticket{
private int number=50;
//卖票的方式
// synchronized 本质:队列,锁
public synchronized void sale(){
if(number>0){
System.out.println(Thread.currentThread().getName()+" 卖出了第"+number+" 张票,剩余:"+number+" 张票");
number--;
}
}
}
Lock
public class SaleTicketDemo02 {
public static void main(String[] args) {
//多线程操作
//并发:多线程操作同一个资源类,把资源类丢入线程
Ticket2 ticket = new Ticket2();
new Thread(()->{for(int i=0;i<40;i++) ticket.sale(); },"A").start();
new Thread(()->{for(int i=0;i<40;i++) ticket.sale(); },"B").start();
new Thread(()->{for(int i=0;i<40;i++) ticket.sale(); },"C").start();
}
}
//lock三部曲
//1、 Lock lock=new ReentrantLock();
//2、 lock.lock() 加锁
//3、 finally=> 解锁:lock.unlock();
class Ticket2{
private int number=50;
Lock lock=new ReentrantLock();
//卖票的方式
// 使用Lock 锁
public void sale(){
//加锁
lock.lock();
try {
//业务代码
if(number>=0){
System.out.println(Thread.currentThread().getName()+" 卖出了第"+number+" 张票,剩余:"+number+" 张票");
number--;
}
}catch (Exception e) {
e.printStackTrace();
}
finally {
//解锁
lock.unlock();
}
}
}
Sybchronized与Lock的区别
-
1、Synchronized 内置的Java关键字,Lock是一个Java类
-
2、Synchronized 无法判断获取锁的状态,Lock可以判断
-
3、Synchronized 会自动释放锁,lock必须要手动加锁和手动释放锁!可能会遇到死锁
-
4、Synchronized 线程1(获得锁->阻塞)、线程2(等待);
lock就不一定会一直等待下去,lock会有一个trylock去尝试获取锁,不会造成长久的等待。
-
5、Synchronized 是可重入锁,不可以中断的,非公平的;Lock,可重入的,可以判断锁,可以自己设置公平锁和非公平锁;
-
6、Synchronized 适合锁少量的代码同步问题,Lock适合锁大量的同步代码;
3 生产者消费者问题
Synchronized版本
public class A {
public static void main(String[] args) {
Data data = new Data();
new Thread(()->{for(int i=0;i<10;i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"A").start();
new Thread(()->{for(int i=0;i<10;i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}},"B").start();
}
}
class Data{
//数字 资源类
private int number = 0;
//+1
public synchronized void increment() throws InterruptedException {
if(number!=0){
//等待操作
this.wait();
}
number++;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程 我+1完毕了
this.notifyAll();
}
//-1
public synchronized void decrement() throws InterruptedException {
if(number==0){
//等待操作
this.wait();
}
number--;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程 我-1完毕了
this.notifyAll();
}
}
存在的问题,A线程B线程,现在如果我有四个线程A B C D!
解决方案:if 改为 while,防止虚假唤醒
JUC版本的生产者和消费者问题
await、signal 替换 wait、notify
public class B {
public static void main(String[] args) {
Data2 data = new Data2();
new Thread(()->{for(int i=0;i<10;i++) {
data.increment();
}
},"A").start();
new Thread(()->{for(int i=0;i<10;i++) {
data.decrement();
}},"B").start();
new Thread(()->{for(int i=0;i<10;i++) {
data.increment();
}
},"C").start();
new Thread(()->{for(int i=0;i<10;i++) {
data.decrement();
}
},"D").start();
}
}
class Data2{
//数字 资源类
private int number = 0;
//lock锁
Lock lock = new ReentrantLock();
Condition condition = lock.newCondition();
//+1
public void increment() {
lock.lock();
try{
//业务
while (number!=0){
//等待操作
condition.await();
}
number++;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程 我+1完毕了
condition.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
//-1
public void decrement() {
lock.lock();
try{
//业务
while (number==0){
//等待操作
condition.await();
}
number--;
System.out.println(Thread.currentThread().getName()+"=>"+number);
//通知其他线程 我+1完毕了
condition.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
Condition的优势:精准的通知和唤醒的线程!
如果我们要指定通知的下一个进行顺序怎么办呢? 我们可以使用Condition来指定通知进程~
/**
* A 执行完 调用B
* B 执行完 调用C
* C 执行完 调用A
*/
public class C {
public static void main(String[] args) {
Data3 data3 = new Data3();
new Thread(()->{
for(int i=0;i<10;i++){
data3.printA();
}
},"A").start();
new Thread(()->{
for(int i=0;i<10;i++){
data3.printB();
}
},"B").start();
new Thread(()->{
for(int i=0;i<10;i++){
data3.printC();
}
},"C").start();
}
}
class Data3{
//资源类
private Lock lock=new ReentrantLock();
private Condition condition1 = lock.newCondition();
private Condition condition2 = lock.newCondition();
private Condition condition3 = lock.newCondition();
private int number = 1; //1A 2B 3C
public void printA(){
lock.lock();
try {
//业务 判断 -> 执行 -> 通知
while(number!=1){
//等待
condition1.await();
}
//操作
System.out.println(Thread.currentThread().getName()+",AAAAA");
//唤醒指定的线程
number=2;
condition2.signal(); // 唤醒2
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void printB(){
lock.lock();
try {
//业务 判断 -> 执行 -> 通知
while (number!=2){
condition2.await();
}
System.out.println(Thread.currentThread().getName()+",BBBBB");
//唤醒3
number=3;
condition3.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void printC(){
lock.lock();
try {
//业务 判断 -> 执行 -> 通知
while(number!=3){
condition3.await();
}
System.out.println(Thread.currentThread().getName()+",CCCCC");
//唤醒1
number=1;
condition1.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
4 集合类不安全
List不安全
我们来看一下List这个集合类:
//java.util.ConcurrentModificationException 并发修改异常!
public class ListTest {
public static void main(String[] args) {
List<Object> arrayList = new ArrayList<>();
for(int i=1;i<=10;i++){
new Thread(()->{
arrayList.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(arrayList);
},String.valueOf(i)).start();
}
}
}
会造成:
ArrayList 在并发情况下是不安全的!
解决方案
1、切换成Vector
2、使用Collections.synchronizedList(new ArrayList<>());
public class ListTest {
public static void main(String[] args) {
List<Object> arrayList = Collections.synchronizedList(new ArrayList<>());
for(int i=1;i<=10;i++){
new Thread(()->{
arrayList.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(arrayList);
},String.valueOf(i)).start();
}
}
}
3、使用JUC中的包:List arrayList = new CopyOnWriteArrayList<>();
public class ListTest {
public static void main(String[] args) {
List<Object> arrayList = new CopyOnWriteArrayList<>();
for(int i=1;i<=10;i++){
new Thread(()->{
arrayList.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(arrayList);
},String.valueOf(i)).start();
}
}
}
CopyOnWriteArrayList
:写入时复制! COW 计算机程序设计领域的一种优化策略
多个线程调用的时候,list,读取的时候,固定的,写入(存在覆盖操作);在写入的时候避免覆盖,造成数据错乱的问题;
Set不安全
Set和List同理可得: 多线程情况下,普通的Set集合是线程不安全的;
解决方案还是两种:
- 使用Collections工具类的synchronized包装的Set类
- 使用
CopyOnWriteArraySet
写入复制的JUC解决方案
//同理:java.util.ConcurrentModificationException
// 解决方案:
public class SetTest {
public static void main(String[] args) {
// Set<String> hashSet = Collections.synchronizedSet(new HashSet<>()); //解决方案1
Set<String> hashSet = new CopyOnWriteArraySet<>();//解决方案2
for (int i = 1; i < 100; i++) {
new Thread(()->{
hashSet.add(UUID.randomUUID().toString().substring(0,5));
System.out.println(hashSet);
},String.valueOf(i)).start();
}
}
}
HashSet底层是什么?
hashSet底层就是一个HashMap;
public HashSet() {
map = new HashMap<>();
}
//add 本质其实就是一个map的key,map的key是无法重复的,所以使用的就是map存储
//hashSet就是使用了hashmap key不能重复的原理
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
//PRESENT是什么? 是一个常量 不会改变的常量 无用的占位
private static final Object PRESENT = new Object();
Map不安全
同样的HashMap基础类也存在并发修改异常!
public static void main(String[] args) {
//map 是这样用的吗? 不是,工作中不使用这个
//默认等价什么? new HashMap<>(16,0.75);
Map<String, String> map = new HashMap<>();
//加载因子、初始化容量
for (int i = 1; i < 100; i++) {
new Thread(()->{
map.put(Thread.currentThread().getName(),UUID.randomUUID().toString().substring(0,5));
System.out.println(map);
},String.valueOf(i)).start();
}
}
结果同样的出现了:异常java.util.ConcurrentModificationException 并发修改异常
解决方案:
- 使用
Collections.synchronizedMap(new HashMap<>());
处理; - 使用
ConcurrentHashMap
进行并发处理
5 Callable
1、可以有返回值;
2、可以抛出异常;
3、方法不同,run()/call()
代码测试
传统使用线程方式:
public class CallableTest {
public static void main(String[] args) {
for (int i = 1; i < 10; i++) {
new Thread(new MyThread()).start();
}
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}
使用Callable进行多线程操作:
Calleable 泛型T就是call运行方法的返回值类型;
但是如何使用呢?
Callable怎么放入到Thread里面呢?
源码分析:
对于Thread运行,只能传入Runnable类型的参数;
我们这是Callable 怎么办呢?
看JDK api文档:
在Runnable里面有一个叫做FutureTask的实现类
FutureTask中可以接受Callable参数
这样我们就可以先把Callable 放入到FutureTask中, 如何再把FutureTask 放入到Thread就可以了。
public class CallableTest {
public static void main(String[] args) throws ExecutionException, InterruptedException {
for (int i = 1; i < 10; i++) {
// new Thread(new Runnable()).start();
// new Thread(new FutureTask<>( Callable)).start();
MyThread thread= new MyThread();
//适配类:FutureTask
FutureTask<String> futureTask = new FutureTask<>(thread);
//放入Thread使用
new Thread(futureTask,String.valueOf(i)).start();
//获取返回值
String s = futureTask.get();
System.out.println("返回值:"+ s);
}
}
}
class MyThread implements Callable<String> {
@Override
public String call() throws Exception {
System.out.println("Call:"+Thread.currentThread().getName());
return "String"+Thread.currentThread().getName();
}
}
这样我们就可以使用Callable来进行多线程编程了,并且我们发现可以有返回值,并且可以抛出异常。
注意两个重点:
6 常用辅助类
6.1 CountDownLatch
其实就是一个减法计数器,对于计数器归零之后再进行后面的操作,这是一个计数器!
//这是一个计数器 减法
public class CountDownLatchDemo {
public static void main(String[] args) throws InterruptedException {
//总数是6
CountDownLatch countDownLatch = new CountDownLatch(6);
for (int i = 1; i <= 6 ; i++) {
new Thread(()->{
System.out.println(Thread.currentThread().getName()+" Go out");
countDownLatch.countDown(); //每个线程都数量-1
},String.valueOf(i)).start();
}
countDownLatch.await(); //等待计数器归零 然后向下执行
System.out.println("close door");
}
}
主要方法:
- countDown 减一操作;
- await 等待计数器归零。
await等待计数器为0,就唤醒,再继续向下运行。
6.2 CyclickBarrier
其实就是一个加法计数器;
public class CyclicBarrierDemo {
public static void main(String[] args) {
//主线程
CyclicBarrier cyclicBarrier = new CyclicBarrier(7,()->{
System.out.println("召唤神龙~");
});
for (int i = 1; i <= 7; i++) {
//子线程
int finalI = i;
new Thread(()->{
System.out.println(Thread.currentThread().getName()+" 收集了第 {"+ finalI+"} 颗龙珠");
try {
cyclicBarrier.await(); //加法计数 等待
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
}
6.3 Semaphore
Semaphore:信号量
抢车位:
3个车位 6辆车:
public class SemaphoreDemo {
public static void main(String[] args) {
//停车位为3个
Semaphore semaphore = new Semaphore(3);
for (int i = 1; i <= 6; i++) {
int finalI = i;
new Thread(()->{
try {
semaphore.acquire(); //得到
//抢到车位
System.out.println(Thread.currentThread().getName()+" 抢到了车位{"+ finalI +"}");
TimeUnit.SECONDS.sleep(2); //停车2s
System.out.println(Thread.currentThread().getName()+" 离开车位");
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
semaphore.release();//释放
}
},String.valueOf(i)).start();
}
}
}
原理:
semaphore.acquire()获得资源,如果资源已经使用完了,就等待资源释放后再进行使用!
semaphore.release()释放,会将当前的信号量释放+1,然后唤醒等待的线程!
作用: 多个共享资源互斥的使用! 并发限流,控制最大的线程数!
7 读写锁
先对于不加锁的情况:
如果我们做一个我们自己的cache缓存。分别有写入操作、读取操作;
我们采用五个线程去写入,使用十个线程去读取。
我们来看一下这个的效果,如果我们不加锁的情况!
package com.ogj.rw;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class ReadWriteLockDemo {
public static void main(String[] args) {
MyCache_ReadWriteLock mycache = new MyCache_ReadWriteLock();
//开启5个线程 写入数据
for (int i = 1; i <=5 ; i++) {
int finalI = i;
new Thread(()->{
mycache.put(String.valueOf(finalI),String.valueOf(finalI));
}).start();
}
//开启10个线程去读取数据
for (int i = 1; i <=10 ; i++) {
int finalI = i;
new Thread(()->{
String o = mycache.get(String.valueOf(finalI));
}).start();
}
}
}
class MyCache_ReadWriteLock{
private volatile Map<String,String> map=new HashMap<>();
//使用读写锁
private ReadWriteLock readWriteLock=new ReentrantReadWriteLock();
//普通锁
private Lock lock=new ReentrantLock();
public void put(String key,String value){
//写入
System.out.println(Thread.currentThread().getName()+" 线程 开始写入");
map.put(key, value);
System.out.println(Thread.currentThread().getName()+" 线程 写入OK");
}
public String get(String key){
//得到
System.out.println(Thread.currentThread().getName()+" 线程 开始读取");
String o = map.get(key);
System.out.println(Thread.currentThread().getName()+" 线程 读取OK");
return o;
}
}
Thread-0 线程 开始写入
Thread-4 线程 开始写入 # 插入了其他的线程进行写入
Thread-4 线程 写入OK
Thread-3 线程 开始写入
Thread-1 线程 开始写入
Thread-2 线程 开始写入
Thread-1 线程 写入OK
Thread-3 线程 写入OK
Thread-0 线程 写入OK # 对于这种情况会出现 数据不一致等情况
Thread-2 线程 写入OK
Thread-5 线程 开始读取
Thread-6 线程 开始读取
Thread-6 线程 读取OK
Thread-7 线程 开始读取
Thread-7 线程 读取OK
Thread-5 线程 读取OK
Thread-8 线程 开始读取
Thread-8 线程 读取OK
Thread-9 线程 开始读取
Thread-9 线程 读取OK
Thread-10 线程 开始读取
Thread-11 线程 开始读取
Thread-12 线程 开始读取
Thread-12 线程 读取OK
Thread-10 线程 读取OK
Thread-14 线程 开始读取
Thread-13 线程 开始读取
Thread-13 线程 读取OK
Thread-11 线程 读取OK
Thread-14 线程 读取OK
Process finished with exit code 0
所以如果我们不加锁的情况,多线程的读写会造成数据不可靠的问题。
我们也可以采用synchronized这种重量锁和轻量锁 lock去保证数据的可靠。
但是这次我们采用更细粒度的锁:ReadWriteLock 读写锁来保证
package com.ogj.rw;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class ReadWriteLockDemo {
public static void main(String[] args) {
MyCache_ReadWriteLock mycache = new MyCache_ReadWriteLock();
//开启5个线程 写入数据
for (int i = 1; i <=5 ; i++) {
int finalI = i;
new Thread(()->{
mycache.put(String.valueOf(finalI),String.valueOf(finalI));
}).start();
}
//开启10个线程去读取数据
for (int i = 1; i <=10 ; i++) {
int finalI = i;
new Thread(()->{
String o = mycache.get(String.valueOf(finalI));
}).start();
}
}
}
class MyCache_ReadWriteLock{
private volatile Map<String,String> map=new HashMap<>();
//使用读写锁
private ReadWriteLock readWriteLock=new ReentrantReadWriteLock();
//普通锁
private Lock lock=new ReentrantLock();
public void put(String key,String value){
//加锁
readWriteLock.writeLock().lock();
try {
//写入
//业务流程
System.out.println(Thread.currentThread().getName()+" 线程 开始写入");
map.put(key, value);
System.out.println(Thread.currentThread().getName()+" 线程 写入OK");
} catch (Exception e) {
e.printStackTrace();
} finally {
readWriteLock.writeLock().unlock(); //解锁
}
}
public String get(String key){
//加锁
String o="";
readWriteLock.readLock().lock();
try {
//得到
System.out.println(Thread.currentThread().getName()+" 线程 开始读取");
o = map.get(key);
System.out.println(Thread.currentThread().getName()+" 线程 读取OK");
} catch (Exception e) {
e.printStackTrace();
} finally {
readWriteLock.readLock().unlock();
}
return o;
}
}
运行结果如下:
Thread-0 线程 开始写入
Thread-0 线程 写入OK
Thread-1 线程 开始写入
Thread-1 线程 写入OK
Thread-2 线程 开始写入
Thread-2 线程 写入OK
Thread-3 线程 开始写入
Thread-3 线程 写入OK
Thread-4 线程 开始写入
Thread-4 线程 写入OK
# 以上 整个过程没有再出现错乱的情况,对于读取,我们运行多个线程同时读取,
# 因为这样不会造成数据不一致问题,也能在一定程度上提高效率
Thread-9 线程 开始读取
Thread-9 线程 读取OK
Thread-10 线程 开始读取
Thread-5 线程 开始读取
Thread-11 线程 开始读取
Thread-11 线程 读取OK
Thread-10 线程 读取OK
Thread-7 线程 开始读取
Thread-7 线程 读取OK
Thread-6 线程 开始读取
Thread-5 线程 读取OK
Thread-14 线程 开始读取
Thread-8 线程 开始读取
Thread-14 线程 读取OK
Thread-6 线程 读取OK
Thread-13 线程 开始读取
Thread-12 线程 开始读取
Thread-13 线程 读取OK
Thread-8 线程 读取OK
Thread-12 线程 读取OK
8 阻塞队列
8.1 BlockingQueue
blockingQueue 是Collection的一个子类;
什么情况我们会使用 阻塞队列呢?————多线程并发处理、线程池!
整个阻塞队列的家族如下:Queue以下实现的有Deque、AbstaractQueue、BlockingQueue;
BlockingQueue以下有Link链表实现的阻塞队列、也有Array数组实现的阻塞队列
8.2 如何使用阻塞队列呢?
操作:添加、移除
四组API
方式 | 抛出异常 | 不会抛出异常,有返回值 | 阻塞 等待 | 超时 等待 |
添加 | add | offer | put | offer(timenum,timeUnit) |
移除 | remove | poll | take | poll(timenum,timeUnit) |
判断队列首 | element | peek | - | - |
/**
* 抛出异常
*/
public static void test1(){
//需要初始化队列的大小
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.add("a"));
System.out.println(blockingQueue.add("b"));
System.out.println(blockingQueue.add("c"));
//抛出异常:java.lang.IllegalStateException: Queue full
// System.out.println(blockingQueue.add("d"));
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
//如果多移除一个
//这也会造成 java.util.NoSuchElementException 抛出异常
System.out.println(blockingQueue.remove());
}
=======================================================================================
/**
* 不抛出异常,有返回值
*/
public static void test2(){
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.offer("a"));
System.out.println(blockingQueue.offer("b"));
System.out.println(blockingQueue.offer("c"));
//添加 一个不能添加的元素 使用offer只会返回false 不会抛出异常
System.out.println(blockingQueue.offer("d"));
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
//弹出 如果没有元素 只会返回null 不会抛出异常
System.out.println(blockingQueue.poll());
}
=======================================================================================
/**
* 等待 一直阻塞
*/
public static void test3() throws InterruptedException {
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
//一直阻塞 不会返回
blockingQueue.put("a");
blockingQueue.put("b");
blockingQueue.put("c");
//如果队列已经满了, 再进去一个元素 这种情况会一直等待这个队列 什么时候有了位置再进去,程序不会停止
// blockingQueue.put("d");
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
//如果我们再来一个 这种情况也会等待,程序会一直运行 阻塞
System.out.println(blockingQueue.take());
}
=======================================================================================
/**
* 等待 超时阻塞
* 这种情况也会等待队列有位置 或者有产品 但是会超时结束
*/
public static void test4() throws InterruptedException {
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
blockingQueue.offer("a");
blockingQueue.offer("b");
blockingQueue.offer("c");
System.out.println("开始等待");
blockingQueue.offer("d",2, TimeUnit.SECONDS); //超时时间2s 等待如果超过2s就结束等待
System.out.println("结束等待");
System.out.println("===========取值==================");
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println("开始等待");
blockingQueue.poll(2,
TimeUnit.SECONDS); //超过两秒 我们就不要等待了
System.out.println("结束等待");
}
8.3 SynchronousQueue同步队列
同步队列 没有容量,也可以视为容量为1的队列;
进去一个元素,必须等待取出来之后,才能再往里面放入一个元素;
put方法 和 take方法;
Synchronized 和 其他的BlockingQueue 不一样 它不存储元素;
put了一个元素,就必须从里面先take出来,否则不能再put进去值!
并且SynchronousQueue 的take是使用了lock锁保证线程安全的。
/**
* 同步队列
*/
public class SynchronousQueueDemo {
public static void main(String[] args) {
BlockingQueue<String> synchronousQueue = new SynchronousQueue<>();
//研究一下 如果判断这是一个同步队列
//使用两个进程
// 一个进程 放进去
// 一个进程 拿出来
new Thread(()->{
try {
System.out.println(Thread.currentThread().getName()+" Put 1");
synchronousQueue.put("1");
System.out.println(Thread.currentThread().getName()+" Put 2");
synchronousQueue.put("2");
System.out.println(Thread.currentThread().getName()+" Put 3");
synchronousQueue.put("3");
} catch (InterruptedException e) {
e.printStackTrace();
}
},"T1").start();
new Thread(()->{
try {
System.out.println(Thread.currentThread().getName()+" Take "+synchronousQueue.take());
// TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName()+" Take "+synchronousQueue.take());
// TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName()+" Take "+synchronousQueue.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
},"T2").start();
}
}
9 线程池
线程池:三大方法、7大参数、4种拒绝策略
池化技术
程序的运行,本质:占用系统的资源!我们需要去优化资源的使用 ===> 池化技术
线程池、JDBC的连接池、内存池、对象池 等等。。。。
资源的创建、销毁十分消耗资源
池化技术:事先准备好一些资源,如果有人要用,就来我这里拿,用完之后还给我,以此来提高效率。
线程池的好处:
1、降低资源的消耗;
2、提高响应的速度;
3、方便管理;
线程复用、可以控制最大并发数、管理线程;
线程池:三大方法
- ExecutorService threadPool = Executors.newSingleThreadExecutor();//单个线程
- ExecutorService threadPool2 = Executors.newFixedThreadPool(5); //创建一个固定的线程池的大小
- ExecutorService threadPool3 = Executors.newCachedThreadPool(); //可伸缩的
//工具类 Executors 三大方法;
public class Demo01 {
public static void main(String[] args) {
ExecutorService threadPool = Executors.newSingleThreadExecutor();//单个线程
ExecutorService threadPool2 = Executors.newFixedThreadPool(5); //创建一个固定的线程池的大小
ExecutorService threadPool3 = Executors.newCachedThreadPool(); //可伸缩的
//线程池用完必须要关闭线程池
try {
for (int i = 1; i <=100 ; i++) {
//通过线程池创建线程
threadPool.execute(()->{
System.out.println(Thread.currentThread().getName()+ " ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
threadPool.shutdown();
}
}
}
7大参数
源码分析
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
本质:三种方法都是开启的ThreadPoolExecutor
public ThreadPoolExecutor(int corePoolSize, //常驻核心线程数
int maximumPoolSize, //线程池能够容纳同时执行的最大线程数
long keepAliveTime, //线程池中的线程空闲时间,超时了没有人调用就会释放
TimeUnit unit, //超时单位
BlockingQueue<Runnable> workQueue, //阻塞队列
ThreadFactory threadFactory, //线程工厂 创建线程的 一般不用动
RejectedExecutionHandler handler //拒绝策略
) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
阿里巴巴的Java操作手册中明确说明:对于Integer.MAX_VALUE初始值较大,所以一般情况我们要使用底层的ThreadPoolExecutor来创建线程池。
拒绝策略4种
new ThreadPoolExecutor.AbortPolicy(); //该拒绝策略为:银行满了,还有人进来,不处理这个人的,并抛出异常超出最大承载,就会抛出异常:队列容量大小+maxPoolSize
new ThreadPoolExecutor.CallerRunsPolicy(); //该拒绝策略为:哪来的去哪里 main线程进行处理
new ThreadPoolExecutor.DiscardPolicy(); //该拒绝策略为:队列满了,丢掉异常,不会抛出异常。
new ThreadPoolExecutor.DiscardOldestPolicy(); //该拒绝策略为:队列满了,尝试去和最早的进程竞争,不会抛出异常
小结和拓展
如何去设置线程池的最大大小如何去设置?
CPU密集型和IO密集型!
1、CPU密集型:电脑的核数是几核就选择几;选择maximunPoolSize的大小
我们可以使用代码来来获取逻辑处理器数量。
于是cpu密集型的写法如下:
2、I/O密集型:
在程序中有15个大型任务,io十分占用资源;I/O密集型就是判断我们程序中十分耗I/O的线程数量,大约是最大I/O数的一倍到两倍之间。
10 四大函数式接口
lambda表达式、链式编程、函数式接口、Stream流式计算
函数式接口:只有一个方法的接口
@FunctionalInterface
public interface Runnable {
public abstract void run();
}
//超级多的@FunctionalInterface
//简化编程模型,在新版本的框架底层大量应用
//foreach()的参数也是一个函数式接口,消费者类的函数式接口
10.1 Function函数型接口
/**
* Function函数型接口
*/
public class Demo01 {
public static void main(String[] args) {
Function<String,String> function = (str) ->{return str;};
System.out.println(function.apply("starasdas"));
}
}
10.2 Predicate断定型接口
/**
* 断定型接口:有一个输入参数,返回值只能是 布尔值!
*/
public class Demo2 {
public static void main(String[] args) {
//判断字符串是否为空
Predicate<String> predicate = (str)->{return str.isEmpty();};
System.out.println(predicate.test("11"));
System.out.println(predicate.test(""));
}
}
10.3 Consummer 消费型接口
/**
* 消费型接口 没有返回值!只有输入!
*/
public class Demo3 {
public static void main(String[] args) {
Consumer<String> consumer = (str)->{
System.out.println(str);
};
consumer.accept("abc");
}
}
10.4 Supplier供给型接口
/**
* 供给型接口,只返回,不输入
*/
public class Demo4 {
public static void main(String[] args) {
Supplier<String> supplier = ()->{return "1024";};
System.out.println(supplier.get());
}
}
11 Stream流式计算
什么是Stream流式计算?
存储+计算!
存储:集合、MySQL
计算:流式计算~
链式编程
/**
要求:一分钟内完成,只能用一行代码
有5个用户,筛选:
1、ID必须是偶数
2、年龄必须大于23岁
3、用户转为大写字母
4、用户名字母倒着排序
5、只输出一个用户
*/
public class Test {
public static void main(String[] args) {
User user1 = new User(1,"a",21);
User user2 = new User(2,"b",22);
User user3 = new User(3,"c",23);
User user4 = new User(4,"d",24);
User user5 = new User(5,"e",25);
User user6 = new User(6,"f",26);
List<User> list = Arrays.asList(user1, user2, user3, user4, user5, user6);
//计算交给流,链式编程!!!!
list.stream()
.filter((u)->{ return u.getId()%2==0; })
.filter((u)->{return u.getAge()>23;})
.map((u)->{return u.getName().toUpperCase();})
.sorted((uu1,uu2)->{
return uu2.compareTo(uu1);
})
.limit(1)
.forEach(System.out::println);
}
}
12 ForkJoin
什么是ForkJoin?
ForkJoin 在JDK1.7出现,并行执行任务!提高效率~。在大数据量速率会更快!
大数据中:MapReduce 核心思想->把大任务拆分为小任务!
ForkJoin 特点: 工作窃取!
实现原理是:双端队列!从上面和下面都可以去拿到任务进行执行!
如何使用ForkJoin?
- 1、通过ForkJoinPool来执行
- 2、计算任务 execute(ForkJoinTask<?> task)
- 3、计算类要去继承ForkJoinTask;
ForkJoin的计算类!
package com.ogj.forkjoin;
import java.util.concurrent.RecursiveTask;
public class ForkJoinDemo extends RecursiveTask<Long> {
private long star;
private long end;
//临界值
private long temp=1000000L;
public ForkJoinDemo(long star, long end) {
this.star = star;
this.end = end;
}
/**
* 计算方法
* @return Long
*/
@Override
protected Long compute() {
if((end-star)<temp){
Long sum = 0L;
for (Long i = star; i < end; i++) {
sum+=i;
}
// System.out.println(sum);
return sum;
}else {
//使用forkJoin 分而治之 计算
//计算平均值
long middle = (star+ end)/2;
ForkJoinDemo forkJoinDemoTask1 = new ForkJoinDemo(star, middle);
forkJoinDemoTask1.fork(); //拆分任务,把线程任务压入线程队列
ForkJoinDemo forkJoinDemoTask2 = new ForkJoinDemo(middle, end);
forkJoinDemoTask2.fork(); //拆分任务,把线程任务压入线程队列
long taskSum = forkJoinDemoTask1.join() + forkJoinDemoTask2.join();
return taskSum;
}
}
}
测试类!
package com.ogj.forkjoin;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
test1();
test2();
test3();
}
/**
* 普通计算
*/
public static void test1(){
long star = System.currentTimeMillis();
long sum = 0L;
for (long i = 1; i < 20_0000_0000; i++) {
sum+=i;
}
long end = System.currentTimeMillis();
System.out.println("sum="+"时间:"+(end-star));
System.out.println(sum);
}
/**
* 使用ForkJoin
*/
public static void test2() throws ExecutionException, InterruptedException {
long star = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinDemo(0L, 20_0000_0000L);
ForkJoinTask<Long> submit = forkJoinPool.submit(task);
Long aLong = submit.get();
System.out.println(aLong);
long end = System.currentTimeMillis();
System.out.println("sum="+"时间:"+(end-star));
}
/**
* 使用Stream 并行流
*/
public static void test3(){
long star = System.currentTimeMillis();
//Stream并行流()
long sum = LongStream.range(0L, 20_0000_0000L).parallel().reduce(0, Long::sum);
System.out.println(sum);
long end = System.currentTimeMillis();
System.out.println("sum="+"时间:"+(end-star));
}
}
.parallel().reduce(0, Long::sum)使用一个并行流去计算整个计算,提高效率。
13 异步回调
Future 设计的初衷:对将来的某个事件结果进行建模!
我们平时都使用CompletableFuture
-
没有返回值的runAsync异步回调
public static void main(String[] args) throws ExecutionException, InterruptedException { // 发起 一个 请求 System.out.println(System.currentTimeMillis()); System.out.println("---------------------"); CompletableFuture<Void> future = CompletableFuture.runAsync(()->{ //发起一个异步任务 try { TimeUnit.SECONDS.sleep(2); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName()+"....."); }); System.out.println(System.currentTimeMillis()); System.out.println("------------------------------"); //输出执行结果 System.out.println(future.get()); //获取执行结果 }
-
返回值的异步回调supplyAsync
//有返回值的异步回调 CompletableFuture<Integer> completableFuture=CompletableFuture.supplyAsync(()->{ System.out.println(Thread.currentThread().getName()); try { TimeUnit.SECONDS.sleep(2); int i=1/0; } catch (InterruptedException e) { e.printStackTrace(); } return 1024; }); System.out.println(completableFuture.whenComplete((t, u) -> { //success 回调 System.out.println("t=>" + t); //正常的返回结果 System.out.println("u=>" + u); //抛出异常的 错误信息 }).exceptionally((e) -> { //error回调 System.out.println(e.getMessage()); return 404; }).get());
whenComplete: 有两个参数,一个是t 一个是u
T:是代表的 正常返回的结果;
U:是代表的 抛出异常的错误信息;
如果发生了异常,get可以获取到exceptionally返回的值;
14 JMM
请你谈谈你对Volatile 的理解
Volatile 是 Java 虚拟机提供 轻量级的同步机制
1、保证可见性
2、不保证原子性
3、禁止指令重排
什么是JMM?
JMM:JAVA内存模型,不存在的东西,是一个概念,也是一个约定!
关于JMM的一些同步的约定:
1、线程解锁前,必须把共享变量立刻刷回主存;
2、线程加锁前,必须读取主存中的最新值到工作内存中;
3、加锁和解锁是同一把锁;
线程中分为 工作内存、主内存
8种操作:
- Read(读取):作用于主内存变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用;
- load(载入):作用于工作内存的变量,它把read操作从主存中变量放入工作内存中;
- Use(使用):作用于工作内存中的变量,它把工作内存中的变量传输给执行引擎,每当虚拟机遇到一个需要使用到变量的值,就会使用到这个指令;
- assign(赋值):作用于工作内存中的变量,它把一个从执行引擎中接受到的值放入工作内存的变量副本中;
- store(存储):作用于主内存中的变量,它把一个从工作内存中一个变量的值传送到主内存中,以便后续的write使用;
- write(写入):作用于主内存中的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中;
- lock(锁定):作用于主内存的变量,把一个变量标识为线程独占状态;
- unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定;
JMM对这8种操作给了相应的规定:
- 不允许read和load、store和write操作之一单独出现。即使用了read必须load,使用了store必须write
- 不允许线程丢弃他最近的assign操作,即工作变量的数据改变了之后,必须告知主存
- 不允许一个线程将没有assign的数据从工作内存同步回主内存
- 一个新的变量必须在主内存中诞生,不允许工作内存直接使用一个未被初始化的变量。就是对变量实施use、store操作之前,必须经过assign和load操作
- 一个变量同一时间只有一个线程能对其进行lock。多次lock后,必须执行相同次数的unlock才能解锁
- 如果对一个变量进行lock操作,会清空所有工作内存中此变量的值,在执行引擎使用这个变量前,必须重新load或assign操作初始化变量的值
- 如果一个变量没有被lock,就不能对其进行unlock操作。也不能unlock一个被其他线程锁住的变量
- 对一个变量进行unlock操作之前,必须把此变量同步回主内存
15 Volatile
1、保证可见性
public class JMMDemo01 {
// 如果不加volatile 程序会死循环
// 加了volatile是可以保证可见性的
private volatile static Integer number = 0;
public static void main(String[] args) {
//main线程
//子线程1
new Thread(()->{
while (number==0){
}
}).start();
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
//子线程2
new Thread(()->{
while (number==0){
}
}).start();
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
number=1;
System.out.println(number);
}
}
2、不保证原子性
原子性:不可分割;
线程A在执行任务的时候,不能被打扰的,也不能被分割的,要么同时成功,要么同时失败。
/**
* 不保证原子性
* number <=2w
*
*/
public class VDemo02 {
private static volatile int number = 0;
public static void add(){
number++;
//++ 不是一个原子性操作,是两个~3个操作
//
}
public static void main(String[] args) {
//理论上number === 20000
for (int i = 1; i <= 20; i++) {
new Thread(()->{
for (int j = 1; j <= 1000 ; j++) {
add();
}
}).start();
}
while (Thread.activeCount()>2){
//main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName()+",num="+number);
}
}
如果不加lock和synchronized ,怎么样保证原子性?
解决方法:使用JUC下的原子包下的class;
public class VDemo02 {
private static volatile AtomicInteger number = new AtomicInteger();
public static void add(){
// number++;
number.incrementAndGet(); //底层是CAS保证的原子性
}
public static void main(String[] args) {
//理论上number === 20000
for (int i = 1; i <= 20; i++) {
new Thread(()->{
for (int j = 1; j <= 1000 ; j++) {
add();
}
}).start();
}
while (Thread.activeCount()>2){
//main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName()+",num="+number);
}
}
这些类的底层都直接和操作系统挂钩!是在内存中修改值。
Unsafe类是一个很特殊的存在;
原子类为什么这么高级?
3、禁止指令重排
什么是指令重排?
我们写的程序,计算机并不是按照我们自己写的那样去执行的
源代码–>编译器优化重排–>指令并行也可能会重排–>内存系统也会重排–>执行
处理器在进行指令重排的时候,会考虑数据之间的依赖性!
int x=1; //1
int y=2; //2
x=x+5; //3
y=x*x; //4
//我们期望的执行顺序是 1_2_3_4 可能执行的顺序会变成2134 1324
//可不可能是 4123? 不可能的
可能造成的影响结果:前提:a b x y这四个值 默认都是0
线程A | 线程B |
---|---|
x=a | y=b |
b=1 | a=2 |
正常的结果: x = 0; y =0;
线程A | 线程B |
---|---|
x=a | y=b |
b=1 | a=2 |
可能在线程A中会出现,先执行b=1,然后再执行x=a;
在B线程中可能会出现,先执行a=2,然后执行y=b;
那么就有可能结果如下:x=2; y=1.
volatile可以避免指令重排:
volatile中会加一道内存的屏障,这个内存屏障可以保证在这个屏障中的指令顺序。
内存屏障:CPU指令。作用:
1、保证特定的操作的执行顺序;
2、可以保证某些变量的内存可见性(利用这些特性,就可以保证volatile实现的可见性)
总结
- volatile可以保证可见性;
- 不能保证原子性
- 由于内存屏障,可以保证避免指令重排的现象产生
面试官:那么你知道在哪里用这个内存屏障用得最多呢?单例模式
16 玩转单例模式
饿汉式、DCL懒汉式
饿汉式
/**
* 饿汉式单例
*/
public class Hungry {
/**
* 可能会浪费空间
*/
private byte[] data1=new byte[1024*1024];
private byte[] data2=new byte[1024*1024];
private byte[] data3=new byte[1024*1024];
private byte[] data4=new byte[1024*1024];
private Hungry(){
}
private final static Hungry hungry = new Hungry();
public static Hungry getInstance(){
return hungry;
}
}
DCL懒汉式
//懒汉式单例模式
public class LazyMan {
private static boolean key = false;
private LazyMan(){
synchronized (LazyMan.class){
if (key==false){
key=true;
}
else{
throw new RuntimeException("不要试图使用反射破坏异常");
}
}
System.out.println(Thread.currentThread().getName()+" ok");
}
private volatile static LazyMan lazyMan;
//双重检测锁模式 简称DCL懒汉式
public static LazyMan getInstance(){
//需要加锁
if(lazyMan==null){
synchronized (LazyMan.class){
if(lazyMan==null){
lazyMan=new LazyMan();
/**
* 1、分配内存空间
* 2、执行构造方法,初始化对象
* 3、把这个对象指向这个空间
*
* 就有可能出现指令重排问题
* 比如执行的顺序是1 3 2 等
* 我们就可以添加volatile保证指令重排问题
*/
}
}
}
return lazyMan;
}
//单线程下 是ok的
//但是如果是并发的
public static void main(String[] args) throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException, NoSuchFieldException {
//Java中有反射
// LazyMan instance = LazyMan.getInstance();
Field key = LazyMan.class.getDeclaredField("key");
key.setAccessible(true);
Constructor<LazyMan> declaredConstructor = LazyMan.class.getDeclaredConstructor(null);
declaredConstructor.setAccessible(true); //无视了私有的构造器
LazyMan lazyMan1 = declaredConstructor.newInstance();
key.set(lazyMan1,false);
LazyMan instance = declaredConstructor.newInstance();
System.out.println(instance);
System.out.println(lazyMan1);
System.out.println(instance == lazyMan1);
}
}
静态内部类
//静态内部类
public class Holder {
private Holder(){
}
public static Holder getInstance(){
return InnerClass.holder;
}
public static class InnerClass{
private static final Holder holder = new Holder();
}
}
枚举
//enum 是什么? enum本身就是一个Class 类
public enum EnumSingle {
INSTANCE;
public EnumSingle getInstance(){
return INSTANCE;
}
}
class Test{
public static void main(String[] args) throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException {
EnumSingle instance1 = EnumSingle.INSTANCE;
Constructor<EnumSingle> declaredConstructor = EnumSingle.class.getDeclaredConstructor(String.class,int.class);
declaredConstructor.setAccessible(true);
//java.lang.NoSuchMethodException: com.ogj.single.EnumSingle.<init>()
EnumSingle instance2 = declaredConstructor.newInstance();
System.out.println(instance1);
System.out.println(instance2);
}
}
使用枚举,我们就可以防止反射破坏了。
枚举类型使用JAD最终反编译后源码:
如果我们看idea 的文件:会发现idea骗了我们,居然告诉我们是有有参构造的,我们使用jad进行反编译。
public final class EnumSingle extends Enum
{
public static EnumSingle[] values()
{
return (EnumSingle[])$VALUES.clone();
}
public static EnumSingle valueOf(String name)
{
return (EnumSingle)Enum.valueOf(com/ogj/single/EnumSingle, name);
}
private EnumSingle(String s, int i)
{
super(s, i);
}
public EnumSingle getInstance()
{
return INSTANCE;
}
public static final EnumSingle INSTANCE;
private static final EnumSingle $VALUES[];
static
{
INSTANCE = new EnumSingle("INSTANCE", 0);
$VALUES = (new EnumSingle[] {
INSTANCE
});
}
}
17 深入理解CAS
public class casDemo {
//CAS : compareAndSet 比较并交换
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
//boolean compareAndSet(int expect, int update)
//期望值、更新值
//如果实际值 和 我的期望值相同,那么就更新
//如果实际值 和 我的期望值不同,那么就不更新
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
//因为期望值是2020 实际值却变成了2021 所以会修改失败
//CAS 是CPU的并发原语
atomicInteger.getAndIncrement(); //++操作
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
}
}
Unsafe类
总结:
CAS:比较当前工作内存中的值 和 主内存中的值,如果这个值是期望的,那么则执行操作!如果不是就一直循环,使用的是自旋锁。
缺点:
- 循环会耗时;
- 一次性只能保证一个共享变量的原子性;
- 它会存在ABA问题
CAS:ABA问题?(狸猫换太子)
线程1:期望值是1,要变成2;
线程2:两个操作:
- 1、期望值是1,变成3
- 2、期望是3,变成1
所以对于线程1来说,A的值还是1,所以就出现了问题,骗过了线程1;
public class casDemo {
//CAS : compareAndSet 比较并交换
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
//boolean compareAndSet(int expect, int update)
//期望值、更新值
//如果实际值 和 我的期望值相同,那么就更新
//如果实际值 和 我的期望值不同,那么就不更新
System.out.println(atomicInteger.compareAndSet(2021, 2020));
System.out.println(atomicInteger.get());
//因为期望值是2020 实际值却变成了2021 所以会修改失败
//CAS 是CPU的并发原语
// atomicInteger.getAndIncrement(); //++操作
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
}
}
18 原子引用
解决ABA问题,对应的思想:就是使用了乐观锁~
带版本号的 原子操作!
Integer 使用了对象缓存机制,默认范围是-128~127,推荐使用静态工厂方法valueOf获取对象实例,而不是new,因为valueOf使用缓存,而new一定会创建新的对象分配新的内存空间。
所以如果遇到,使用大于128的时候,使用原子引用的时候,如果超过了这个值,那么就不会进行版本上升!
那么如果我们使用小于128的时候:
正常业务操作中,我们一般使用的是一个个对象,一般情况不会遇到这种情况。
19 各种锁的理解
19.1 公平锁、非公平锁
公平锁:非常公平;不能插队的,必须先来后到;
/**
* Creates an instance of {@code ReentrantLock}.
* This is equivalent to using {@code ReentrantLock(false)}.
*/
public ReentrantLock() {
sync = new NonfairSync();
}
非公平锁:非常不公平,允许插队的,可以改变顺序。
/**
* Creates an instance of {@code ReentrantLock} with the
* given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
19.2 可重入锁
可重入锁(递归锁)
Synchronized锁
public class Demo01 {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(()->{
phone.sms();
},"A").start();
new Thread(()->{
phone.sms();
},"B").start();
}
}
class Phone{
public synchronized void sms(){
System.out.println(Thread.currentThread().getName()+"=> sms");
call();//这里也有一把锁
}
public synchronized void call(){
System.out.println(Thread.currentThread().getName()+"=> call");
}
}
lock锁
//lock
public class Demo02 {
public static void main(String[] args) {
Phone2 phone = new Phone2();
new Thread(()->{
phone.sms();
},"A").start();
new Thread(()->{
phone.sms();
},"B").start();
}
}
class Phone2{
Lock lock=new ReentrantLock();
public void sms(){
lock.lock(); //细节:这个是两把锁,两个钥匙
//lock锁必须配对,否则就会死锁在里面
try {
System.out.println(Thread.currentThread().getName()+"=> sms");
call();//这里也有一把锁
} catch (Exception e) {
e.printStackTrace();
}finally {
lock.unlock();
}
}
public void call(){
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + "=> call");
}catch (Exception e){
e.printStackTrace();
}
finally {
lock.unlock();
}
}
}
- lock锁必须配对,相当于lock和 unlock 必须数量相同;
- 在外面加的锁,也可以在里面解锁;在里面加的锁,在外面也可以解锁;
19.3 自旋锁
spinlock
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}
自我设计自旋锁:
public class SpinlockDemo {
//int 0
//thread null
AtomicReference<Thread> atomicReference=new AtomicReference<>();
//加锁
public void myLock(){
Thread thread = Thread.currentThread();
System.out.println(thread.getName()+"===> mylock");
//自旋锁
while (!atomicReference.compareAndSet(null,thread)){
System.out.println(Thread.currentThread().getName()+" ==> 自旋中~");
}
}
//解锁
public void myunlock(){
Thread thread=Thread.currentThread();
System.out.println(thread.getName()+"===> myUnlock");
atomicReference.compareAndSet(thread,null);
}
}
public class TestSpinLock {
public static void main(String[] args) throws InterruptedException {
ReentrantLock reentrantLock = new ReentrantLock();
reentrantLock.lock();
reentrantLock.unlock();
//使用CAS实现自旋锁
SpinlockDemo spinlockDemo=new SpinlockDemo();
new Thread(()->{
spinlockDemo.myLock();
try {
TimeUnit.SECONDS.sleep(3);
} catch (Exception e) {
e.printStackTrace();
} finally {
spinlockDemo.myunlock();
}
},"t1").start();
TimeUnit.SECONDS.sleep(1);
new Thread(()->{
spinlockDemo.myLock();
try {
TimeUnit.SECONDS.sleep(3);
} catch (Exception e) {
e.printStackTrace();
} finally {
spinlockDemo.myunlock();
}
},"t2").start();
}
}
运行结果:
t2进程必须等待t1进程Unlock后,才能Unlock,在这之前进行自旋等待。。。。
19.4 死锁
死锁测试,怎么排除死锁:
package com.ogj.lock;
import java.util.concurrent.TimeUnit;
public class DeadLock {
public static void main(String[] args) {
String lockA= "lockA";
String lockB= "lockB";
new Thread(new MyThread(lockA,lockB),"t1").start();
new Thread(new MyThread(lockB,lockA),"t2").start();
}
}
class MyThread implements Runnable{
private String lockA;
private String lockB;
public MyThread(String lockA, String lockB) {
this.lockA = lockA;
this.lockB = lockB;
}
@Override
public void run() {
synchronized (lockA){
System.out.println(Thread.currentThread().getName()+" lock"+lockA+"===>get"+lockB);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lockB){
System.out.println(Thread.currentThread().getName()+" lock"+lockB+"===>get"+lockA);
}
}
}
}
解决问题
1、使用jps定位进程号,jdk的bin目录下: 有一个jps
命令:jps -l
2、使用jstack 进程进程号
找到死锁信息
一般情况信息在最后:
面试,工作中!排查问题!
1、日志
2、堆栈信息
参考资料:
https://blog.youkuaiyun.com/qq_41617848/article/details/107619810
ock = new ReentrantLock();
reentrantLock.lock();
reentrantLock.unlock();
//使用CAS实现自旋锁
SpinlockDemo spinlockDemo=new SpinlockDemo();
new Thread(()->{
spinlockDemo.myLock();
try {
TimeUnit.SECONDS.sleep(3);
} catch (Exception e) {
e.printStackTrace();
} finally {
spinlockDemo.myunlock();
}
},"t1").start();
TimeUnit.SECONDS.sleep(1);
new Thread(()->{
spinlockDemo.myLock();
try {
TimeUnit.SECONDS.sleep(3);
} catch (Exception e) {
e.printStackTrace();
} finally {
spinlockDemo.myunlock();
}
},"t2").start();
}
}
运行结果:
**t2进程必须等待t1进程Unlock后,才能Unlock,在这之前进行自旋等待。。。。**
[外链图片转存中...(img-EaEnZGD3-1617175593119)]
## 19.4 死锁
死锁测试,怎么排除死锁:
```java
package com.ogj.lock;
import java.util.concurrent.TimeUnit;
public class DeadLock {
public static void main(String[] args) {
String lockA= "lockA";
String lockB= "lockB";
new Thread(new MyThread(lockA,lockB),"t1").start();
new Thread(new MyThread(lockB,lockA),"t2").start();
}
}
class MyThread implements Runnable{
private String lockA;
private String lockB;
public MyThread(String lockA, String lockB) {
this.lockA = lockA;
this.lockB = lockB;
}
@Override
public void run() {
synchronized (lockA){
System.out.println(Thread.currentThread().getName()+" lock"+lockA+"===>get"+lockB);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lockB){
System.out.println(Thread.currentThread().getName()+" lock"+lockB+"===>get"+lockA);
}
}
}
}
解决问题
1、使用jps定位进程号,jdk的bin目录下: 有一个jps
命令:jps -l
[外链图片转存中…(img-KALAOYyP-1617175593121)]
2、使用jstack 进程进程号
找到死锁信息
[外链图片转存中…(img-b8XcRpJW-1617175593123)]
一般情况信息在最后:
[外链图片转存中…(img-bgN7aX9F-1617175593125)]
面试,工作中!排查问题!
1、日志
2、堆栈信息
参考资料:
https://blog.youkuaiyun.com/qq_41617848/article/details/107619810