Python3+OpenCV(四):离散傅里叶变换(DFT)



1、原理

对一张图像使用傅里叶变换就是将它分解成正弦和余弦两部分,也就是将图像从空间域(spatial domain)转换到频域(frequency domain)。这一转换的理论基础来自于以下事实:任一函数都可以表示成无数个正弦和余弦函数的和的形式。傅里叶变换就是一个用来将函数分解的工具。
二维图像的傅里叶变换可以用以下数学公式表达:

在这里插入图片描述

式中f(i, j)是图像空间域的值而F是频域的值。傅里叶转换的结果是复数,这也显示出了傅里叶变换是一副实数图像(real image)和虚数图像(complex image)叠加或者是幅度图像(magitude image)和相位图像(phase image)叠加的结果。

在实际的图像处理算法中仅有幅度图像(magnitude image)图像能够用到,因为幅度图像包含了我们所需要的所有图像几何结构的信息。但是,如果想通过修改幅度图像或者相位图像来间接修改原空间图像,需要保留幅度图像和相位图像来进行傅里叶逆变换,得到修改后图像。

对于数字图像这种离散的信号,频率大小表示信号变化的剧烈程度或者说是信号变化的快慢。频率越大,变化越剧烈,频率越小,信号越平缓。 对应到图像中,高频信号往往是图像中的边缘信号和噪声信号,而低频信号包含图像变化频繁的图像轮廓及背景等信号。

对于一幅大小为M x N的图像,图像的傅里叶频谱关于(M/2, N/2)的对称性。

  • 频谱图A区与D区关于(M/2, N/2)对称
  • 频谱图B区和C区关于(M/2, N/2)对称
    在这里插入图片描述

2、实现

cv2.dft(src, dst=None, flag=None, nonzeroRows=0)

作用:进行傅里

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值