算法分析
第一章、分治法(案例:二分搜索算法)与递归算法
##基础概念##
- 分治法:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。(分解、治理、合并;简称:分-治-合)
- 递归:直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。
##案例##
- 二分搜索算法
主要方法体:
#include<iostream>
using namespace std;
```cpp
bool BinarySearch(int a[], int n, int x, int&i, int&j){
int left = 0;
int right = n - 1;
while (left <= right){
int mid = (left + right) / 2;
if (x == a[mid]){
i = j = mid;
return true;
}
if (x > a[mid]){
left = mid + 1;
}
else{
right = mid - 1;
}
}
i = right;
j = left;
return false;
}
int main(){
int array[11];
int key, i=0, j;
cout << "原始数据为" << endl;
for (int i = 0; i < 11; i++){
cout << endl << "请输入需要查找的数组的第" <<i<<"个数"<< endl;
cin >> array[i];
}
cout << "待查找的数组为:";
for (int i = 0; i < 11; i++)
cout << array[i] <<" ";
cout << endl << "请输入待查找的数据" << endl;
cin >> key;
bool findInt = BinarySearch(array, 11, key, i, j);
if (findInt){
cout << "find the Value at" << i << endl;
}
else{
cout << "not find" << endl
<< "比待查数据大的数下标为:" << j << endl
<< "比待查数据小的数下标为:" << i << endl;
}
return 0;
}
- 集合划分问题:
由递归可得:
F(n,m)=0 , m>n或m=0;
F(n,m)=1,m=1或n=m>0;
F(n,m)=m*F(n-1,m)+F(n-1,m-1);
代码:
#include<iostream>
using namespace std;
int f(int n, int m){
if (m == 1 || n == m)
return 1;
else
return f(n - 1, m - 1) + f(n - 1, m)*m;
}
int main(){
int n;
cout << "请输入集合的元素个数" << endl;
cin >> n;
while (n > 1){
int i = 0, j = 0;
int sum = 0;
for (i = 1; i <= n; i++){
j = f(n, i);
cout << "f(" << n << ", " << i << ") = " << j << endl;
sum += j;
}
cout << "集合" << n << "的所有划分数为:" << sum << endl;
cout << endl << "请输入集合的元素个数" << endl;
cin >> n;
}
return 0;
}