Description
Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtracts any positive multiple of the lesser of the two numbers from the greater of the two numbers, provided that the resulting number must be nonnegative. Then Ollie, the second player, does the same with the two resulting numbers, then Stan, etc., alternately, until one player is able to subtract a multiple of the lesser number from the greater to reach 0, and thereby wins. For example, the players may start with (25,7):
an Stan wins.
25 7
11 7
4 7
4 3
1 3
1 0
an Stan wins.
Input
The input consists of a number of lines. Each line contains two positive integers giving the starting two numbers of the game. Stan always starts.
Output
For each line of input, output one line saying either Stan wins or Ollie wins assuming that both of them play perfectly. The last line of input contains two zeroes and should not be processed.
Sample Input
34 12 15 24 0 0
Sample Output
Stan wins Ollie wins
Source
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
博弈+扩展欧几里得算法~
从题目就可以看出来这道题要用扩展欧几里得算法~
对于两组石子x,y(x>y,且x/y=k),可以一次性取出y,y*2,y*3,…,y*k颗石子,对于取石子的人来说,如果以后有必胜策略,就一次性取y*k颗石子,如果必输,就剩下一组,使得另一人只能取走剩下的y颗,由此可以看出遇到k>1的人必胜。
所以就先预处理,把石子分为几堆,每堆数量表示k的值,循环直到k!=1,就输出。
#include<cstdio>
#include<iostream>
using namespace std;
int x,y,a[100001],now;
int main()
{
while(scanf("%d%d",&x,&y)==2 && x)
{
if(x<y) swap(x,y);now=1;a[0]=0;
while(now)
{
a[++a[0]]=x/y;now=x%y;
x=y;y=now;
}now++;
for(int i=1;i<=a[0] && a[i]==1;i++) now++;
if(now>a[0])
{
if(now%2) printf("Ollie wins\n");
else printf("Stan wins\n");
}
else
{
if(now%2) printf("Stan wins\n");
else printf("Ollie wins\n");
}
}
return 0;
}

本文介绍了一个基于两个玩家Stan和Ollie的游戏,通过使用扩展欧几里得算法来解决游戏中的策略问题。游戏的目标是在两人轮流操作下,通过减法操作将一组数字减少至0。文章提供了详细的算法实现过程。

138

被折叠的 条评论
为什么被折叠?



