在数据分析的实际场景中,冷热数据往往面临着不同的查询频次及响应速度要求。例如在电商订单场景中,用户经常访问近 6 个月的订单,时间较久远的订单访问次数非常少;在行为分析场景中,需支持近期流量数据的高频查询且时效性要求高,但为了保证历史数据随时可查,往往要求数据保存周期更为久远;在日志分析场景中,历史数据的访问频次很低,但需长时间备份以保证后续的审计和回溯的工作…往往历史数据的应用价值会随着时间推移而降低,且需要应对的查询需求也会随之锐减。而随着历史数据的不断增多,如果我们将所有数据存储在本地,将造成大量的资源浪费。
为了解决满足以上问题,冷热数据分层技术应运而生,以更好满足企业降本增效的趋势。顾名思义,冷热分层是将 冷 热数据 分别 存储在 成本不同 的存储介质上,例如热数据存储在成本更高的 SSD 盘上、以提高时效数据的查询速度和响应能力,而冷数据则存储在相对低成本的 HDD 盘甚至更为廉价的对象存储上,以降低存储成本。我们还可以根据实际业务需求进行灵活的配置和调整,以满足不同场景的要求。
冷热分层一般适用于以下需求场景:
-
数据存储周期长:面对历史数据的不断增加,存储成本也随之增加;
-
冷热数据访问频率及性能要求不同:热数据访问频率高且需要快速响应,而冷数据访问频率低且响应速度要求不高;
-
数据备份和恢复成本高:备份和恢复大量数据需要消耗大量的时间和资源。
-
…
更高存储效率的冷热分层技术
自 Apache Doris 0.12 版本引入动态分区功能,开始支持对表分区进行生命周期管理,可以设置热数据转冷时间以及存储介质标识,通过后台任务将热数据从 SSD 自动冷却到 HDD,以帮助用户较大程度地降低存储成本。用户可以在建表属性中配置参数 storage_cooldown_time 或者 dynamic_partition.hot_partition_num 来控制数据从 SSD 冷却到 HDD,当分区满足冷却条件时,Doris 会自动执行任务。而 HDD 上的数据是以多副本的方式存储的,并没有做到最大程度的成本节约,因此对于冷数据存储成本仍然有较大的优化空间。
为了帮助用户进一步降低存储成本,社区在已有功能上进行了优化,并在 Apache Doris 2.0 版本中推出了冷热 数据 分层的功能。冷热数据分层功能使 Apache Doris 可以将冷数据下沉到存储成本更加低廉的对象存储中,同时冷数据在对象存储上的保存方式也从多副本变为单副本,存储成本进一步降至原先的三分之一,同时也减少了因存储附加的计算资源成本和网络开销成本。
如下图所示,在 Apache Doris 2.0 版本中支持三级存储,分别是 SSD、HDD 和对象存储。用户可以配置使数据从 SSD 下沉到 HDD,并使用冷热分层功能将数据从 SSD 或者 HDD 下沉到对象存储中。

以公有云价格为例,云磁盘的价格通常是对象存储的 5-10 倍,如果可以将 80% 的冷数据保存到对象存储中,存储成本至少可降低 70%。
我们使用以下公式计算节约的成本,设冷数据比率为 rate,对象存储价格为 OSS,云磁盘价格为 CloudDisk
1 − r a t e ∗ 100 ∗ O S S + ( 1 − r a t e ) ∗ 100 ∗ C l o u d D i s k 100 ∗ C l o u d D i s k 1 - \frac{rate * 100 * OSS + (1 - rate) * 100 * CloudDisk}{100 * CloudDisk} 1−100∗CloudDiskrate∗100∗OSS+

文章介绍了ApacheDoris2.0版本引入的冷热数据分层技术,该技术通过将冷数据存储在低成本的对象存储上,降低存储成本,同时保持查询效率。冷热数据分层允许根据访问频率和性能要求将数据分别存储在SSD、HDD和对象存储,通过动态分区和生命周期管理实现数据自动冷却。文章还提供了配置和使用该功能的步骤,以及查询性能测试结果,证明了冷数据分层对查询性能的影响微乎其微。
最低0.47元/天 解锁文章
5172

被折叠的 条评论
为什么被折叠?



