训练一个简单的Tensorflow神经网络模型

以下代码运行于Google Colaboratory:

import tensorflow as tf
from numpy.random import RandomState

batch_size = 8

# 定义神经网络参数
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))

# 定义输入
x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')

# 前向传播
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

# 定义损失函数和反向传播算法
cross_entropy = -tf.reduce_mean(
    y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)

# 通过随机数生成一个模拟数据集
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)

# 定义规则来给出样本标签
Y = [[int(x1+x2 < 1)] for (x1, x2) in X]

# 创建一个会话
with tf.Session() as sess:
  init_op = tf.global_variables_initializer()
  sess.run(init_op)
  print('w1:', sess.run(w1))
  print('w2:', sess.run(w2))
  
  # 设定训练的轮数
  STEPS = 5000
  for i in range(STEPS):
    
    start = (i * batch_size) % dataset_size
    end = min(start+batch_size, dataset_size)
    
    sess.run(train_step,
            feed_dict={x: X[start:end], y_: Y[start:end]})
    
    # 每隔一段时间计算在所有数据上的交叉熵
    if i % 1000 == 0:
      total_cross_entropy = sess.run(cross_entropy,
                                     feed_dict={x: X, y_: Y})
      print("After %d trainning step(s), cross entropy on all data id %g"
            % (i, total_cross_entropy))
      
  # 训练结束
  print('w1:', sess.run(w1))
  print('w2:', sess.run(w2))

输出结果如下:

w1: [[-0.8113182   1.4845988   0.06532937]
 [-2.4427042   0.0992484   0.5912243 ]]
w2: [[-0.8113182 ]
 [ 1.4845988 ]
 [ 0.06532937]]
After 0 trainning step(s), cross entropy on all data id 0.0674925
After 1000 trainning step(s), cross entropy on all data id 0.0163385
After 2000 trainning step(s), cross entropy on all data id 0.00907547
After 3000 trainning step(s), cross entropy on all data id 0.00714436
After 4000 trainning step(s), cross entropy on all data id 0.00578471
w1: [[-1.9618274  2.582354   1.6820378]
 [-3.4681718  1.0698233  2.11789  ]]
w2: [[-1.8247149]
 [ 2.6854665]
 [ 1.4181951]]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值