重建二叉树

DESC:

输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。

例如,给出

前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7

限制:

0 <= 节点个数 <= 5000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/zhong-jian-er-cha-shu-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

CODE1:

JAVA:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if (preorder == null || inorder == null || preorder.length == 0 || inorder.length == 0) {
            return null;
        }
        TreeNode root = new TreeNode(preorder[0]);
        for (int i=0; i<inorder.length; i++) {
            if (inorder[i] == root.val) {
                root.left = this.buildTree(Arrays.copyOfRange(preorder, 1, i+1), Arrays.copyOfRange(inorder, 0, i));
                root.right = this.buildTree(Arrays.copyOfRange(preorder, i+1, preorder.length), Arrays.copyOfRange(inorder, i+1, inorder.length));
            }
        }
        return root;
    }
}

NOTE1:

  1. 递归,dfs
  2. 前序遍历首位肯定是根节点值,在中序遍历找到该根节点值位置(二叉树无重复值是前提),则在位置左边便是所有的左节点,右侧有所有的右节点,且都是中序排序,并根据索引位置可知道左节点数;
  3. 根据左节点数,可找到左节点的前序遍历,中序遍历,将其放到方法中递归调用,则得到根节点的左节点,同理,可得到右节点;
  4. 注意边界,前开后闭

CODE1在每次查找根节点位置时,都需要遍历对应的中序进行查找,效率较低,优化。。。

CODE2:

JAVA:
 

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public Map<Integer, Integer> inorderIndexMap = new HashMap();
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if (preorder == null || inorder == null || preorder.length == 0 || inorder.length == 0) {
            return null;
        }
        for (int i=0; i<inorder.length; i++) {
            inorderIndexMap.put(inorder[i], i);
        }
        return this.buildTree(preorder, inorder, 0, preorder.length-1, 0, inorder.length-1);
    }

    public TreeNode buildTree(int[] preorder, int[] inorder, int preLeft, int preRight, int inLeft, int inRight) {
        if (preLeft > preRight) {
            return null;
        }
        int rootVal = preorder[preLeft];
        TreeNode node = new TreeNode(rootVal);
        int midIndex = inorderIndexMap.get(rootVal);
        node.left = this.buildTree(preorder, inorder, preLeft+1, preLeft+midIndex-inLeft, inLeft, midIndex-1); 
        node.right = this.buildTree(preorder, inorder, preLeft+midIndex-inLeft+1, preRight, midIndex+1, inRight);
        return node;
    }
}

NOTE2:

  1. 相比code1,这里我们先将中序遍历的值及其位置索引放到map中,便于后面以O(1)的时间复杂度获取根节点的问题,解决code1每次遍历耗时的问题;
  2. 因为每次获取的根节点索引都是相对于原始中序结果,所以需要递归中都是相对原始前序或中序结果的位置索引,不像code1中直接将对应的序列截出来递归,所以更需要计算好边界问题,注意参数传递的都是闭区间;

CODE3:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode deduceTree(int[] preorder, int[] inorder) {
        if (preorder == null || inorder == null || preorder.length == 0 || preorder.length != inorder.length) {
            return null;
        }
        Map<Integer, Integer> inorderIndexMap = new HashMap<>();
        for (int i=0; i<inorder.length; i++) {
            inorderIndexMap.put(inorder[i], i);
        }
        #前闭后开
        return deduceTree(inorderIndexMap, preorder, 0, preorder.length, inorder, 0, inorder.length);
    }

    public TreeNode deduceTree (Map<Integer, Integer> inorderIndexMap, int[] preorder, int preStart, int preEnd, int[] inorder, int inoStart, int inoEnd) {
        if (preStart>=preEnd) {
            return null;
        }
        int val = preorder[preStart];
        int inorderIndex = inorderIndexMap.get(val);
        TreeNode node = new TreeNode(val);
        node.left = deduceTree(inorderIndexMap, preorder, preStart+1, preStart+1+inorderIndex-inoStart, inorder, inoStart, inorderIndex);
        node.right = deduceTree(inorderIndexMap, preorder, preStart+1+inorderIndex-inoStart,preEnd, inorder, inorderIndex+1, inoEnd);
        return node;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值