DESC:
输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]返回如下的二叉树:
3
/ \
9 20
/ \
15 7限制:
0 <= 节点个数 <= 5000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/zhong-jian-er-cha-shu-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
CODE1:
JAVA:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public TreeNode buildTree(int[] preorder, int[] inorder) { if (preorder == null || inorder == null || preorder.length == 0 || inorder.length == 0) { return null; } TreeNode root = new TreeNode(preorder[0]); for (int i=0; i<inorder.length; i++) { if (inorder[i] == root.val) { root.left = this.buildTree(Arrays.copyOfRange(preorder, 1, i+1), Arrays.copyOfRange(inorder, 0, i)); root.right = this.buildTree(Arrays.copyOfRange(preorder, i+1, preorder.length), Arrays.copyOfRange(inorder, i+1, inorder.length)); } } return root; } }
NOTE1:
- 递归,dfs
- 前序遍历首位肯定是根节点值,在中序遍历找到该根节点值位置(二叉树无重复值是前提),则在位置左边便是所有的左节点,右侧有所有的右节点,且都是中序排序,并根据索引位置可知道左节点数;
- 根据左节点数,可找到左节点的前序遍历,中序遍历,将其放到方法中递归调用,则得到根节点的左节点,同理,可得到右节点;
- 注意边界,前开后闭
CODE1在每次查找根节点位置时,都需要遍历对应的中序进行查找,效率较低,优化。。。
CODE2:
JAVA:
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public Map<Integer, Integer> inorderIndexMap = new HashMap(); public TreeNode buildTree(int[] preorder, int[] inorder) { if (preorder == null || inorder == null || preorder.length == 0 || inorder.length == 0) { return null; } for (int i=0; i<inorder.length; i++) { inorderIndexMap.put(inorder[i], i); } return this.buildTree(preorder, inorder, 0, preorder.length-1, 0, inorder.length-1); } public TreeNode buildTree(int[] preorder, int[] inorder, int preLeft, int preRight, int inLeft, int inRight) { if (preLeft > preRight) { return null; } int rootVal = preorder[preLeft]; TreeNode node = new TreeNode(rootVal); int midIndex = inorderIndexMap.get(rootVal); node.left = this.buildTree(preorder, inorder, preLeft+1, preLeft+midIndex-inLeft, inLeft, midIndex-1); node.right = this.buildTree(preorder, inorder, preLeft+midIndex-inLeft+1, preRight, midIndex+1, inRight); return node; } }
NOTE2:
- 相比code1,这里我们先将中序遍历的值及其位置索引放到map中,便于后面以O(1)的时间复杂度获取根节点的问题,解决code1每次遍历耗时的问题;
- 因为每次获取的根节点索引都是相对于原始中序结果,所以需要递归中都是相对原始前序或中序结果的位置索引,不像code1中直接将对应的序列截出来递归,所以更需要计算好边界问题,注意参数传递的都是闭区间;
CODE3:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode deduceTree(int[] preorder, int[] inorder) {
if (preorder == null || inorder == null || preorder.length == 0 || preorder.length != inorder.length) {
return null;
}
Map<Integer, Integer> inorderIndexMap = new HashMap<>();
for (int i=0; i<inorder.length; i++) {
inorderIndexMap.put(inorder[i], i);
}
#前闭后开
return deduceTree(inorderIndexMap, preorder, 0, preorder.length, inorder, 0, inorder.length);
}
public TreeNode deduceTree (Map<Integer, Integer> inorderIndexMap, int[] preorder, int preStart, int preEnd, int[] inorder, int inoStart, int inoEnd) {
if (preStart>=preEnd) {
return null;
}
int val = preorder[preStart];
int inorderIndex = inorderIndexMap.get(val);
TreeNode node = new TreeNode(val);
node.left = deduceTree(inorderIndexMap, preorder, preStart+1, preStart+1+inorderIndex-inoStart, inorder, inoStart, inorderIndex);
node.right = deduceTree(inorderIndexMap, preorder, preStart+1+inorderIndex-inoStart,preEnd, inorder, inorderIndex+1, inoEnd);
return node;
}
}