R语言回归篇: 线性回归模型的建立与应用
线性回归是一种常用的统计分析方法,用于探索自变量与因变量之间的线性关系。在R语言中,我们可以使用多种函数和包来建立和应用线性回归模型。本文将介绍如何使用R语言进行线性回归的建模和分析,并提供相应的源代码。
数据准备
首先,我们需要准备一组包含自变量和因变量的数据集。假设我们有一个名为"dataset.csv"的CSV文件,其中包含了自变量X和因变量Y的观测值。我们可以使用R语言的read.csv()
函数将数据读取到一个数据框中。
# 读取数据
data <- read.csv("dataset.csv")
模型建立
接下来,我们可以使用R语言的lm()
函数建立线性回归模型。该函数的基本语法如下所示:
model <- lm(formula, data)
其中,formula
是一个公式,用于指定线性回归模型的形式,data
是包含自变量和因变量的数据框。
假设我们的线性回归模型形式为Y = β0 + β1*X,其中Y为因变量,