import keras
from keras.layers import Input,Dense,Conv2D
from keras.layers import MaxPooling2D,Flatten,Convolution2D
from keras.models import Model
import os
import numpy as np
from PIL import Image
from keras.optimizers import SGD
from scipy import misc
root_path = os.getcwd()
train_names = ['bear','blackswan','bus','camel','car','cows','dance','dog','hike','hoc','kite','lucia','mallerd','pigs','soapbox','stro','surf','swing','train','walking']
test_names = ['boat','dance-jump','drift-turn','elephant','libby']
def load_data(seq_names,data_number,seq_len):
#生成图片对
print('loading data.....')
frame_num = 51
train_data1 = []
train_data2 = []
train_lab = []
count = 0
while count < data_number:
count = count + 1
pos_neg = np.random.randint(0,2)
if pos_neg==0:
keras实现基于孪生网络的图片相似度计算方式
最新推荐文章于 2024-04-01 21:28:00 发布
该博客介绍了如何利用Keras实现基于孪生网络的图片相似度计算。作者通过实验获得了约0.7的精度,但也遇到了数据加载、验证集划分和模型保存等问题。此外,博客还探讨了数据预处理、网络架构和模型细节,包括构建句子编码器和使用Lambda层计算向量差异。

订阅专栏 解锁全文
4149

被折叠的 条评论
为什么被折叠?



