机器学习-三种回归方法(Ridge、LASSO和ElasticNet回归)

该博客介绍了机器学习中防止过拟合的三种回归方法:Ridge回归(L2正则化)、LASSO回归(L1正则化)和ElasticNet回归(结合L1和L2正则化)。通过代码示例展示了每种回归模型的实现,并分别给出了预测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Section I: Brief Introduction on Three Regression Models

Regulation is one approach to tackle the problem of overfitting by adding additional information, and thereby shrinking the parameter values of the model to induce a penalty against complexity. The most popular approaches to regularized linear regression are the so-called Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO), AND Elastic Net Models.

  • Ridge Regression: L2 Regulation
  • LASSO Regression: L1 Regulation
  • ElasticNet Regression: L2 and L1 Regulation

Two Quantitative Measures

  • Mean Square Error(MSE)
  • R2 Score - Standard Version of MSE

FROM
Sebastian Raschka, Vahid Mirjalili. Python机器学习第二版. 南京:东南大学出版社,2018.

第一部分:Ridge Regression
代码

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,r2_score
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

plt.rcParams['figure.dpi']=200
plt.rcParams['savefig.dpi']=200
font = {
   'family': 'Times New Roman',
        'weight': 'light'}
plt.rc("font", **font)

#Section 1: Load data and split it into Train/Test dataset
price=datasets.load_boston()
X=price.data
y=price.target

X_train,X_test,y_train,y_test=train_test_split(X,y,
                                               test_size=0.3)

#Section 2: Ridge Regression and Least Shrinkage and Selection Operator(LASSO) AND Elastic Net
#Ridge: L2 Regulation
#LASSO: L1 Regulation
#Elastic Net: Both L1 and L2 Regulation
#Section 2.1: Ridge Model
#The parameter alpha would be the regulation stength.
from sklearn.linear_model import Ridge

ridge=Ridge(alpha=1.0)
ridge.fit(X_train,y_train)
y_train_pred=ridge.predict(X_train)
y_test_pred=ridge.predict(X_test)

plt.scatter(y_train_pred,y_train_pred-y_train,
            c='blue',marker='o',edgecolor='white',
            label='Training Data')
plt.scatter(y_test_pred,y_test_pred-y_test,
            c='limegreen',marker='s',edgecolors='white',
            label='Test Data')
plt.xlabel("Predicted Values")
plt.ylabel("The Residuals")
plt.legend(loc='upper left')
plt.hlines(y=0,xmin=-10,xmax=50,color='black',lw=2)
plt.xlim([-10,50])
plt.title("Ridge Regression Model")
plt.savefig('./fig2.png')
plt.show()

print("\nMSE Train in Ridge: %.3f, Test: %.3f" % \
      (mean_squared_erro
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值