机器学习-类别不平衡-上下采样(Upsampling and Downsampling)

本文介绍了处理类别不平衡问题的上下采样技术。常见于如垃圾邮件过滤、欺诈检测和疾病筛查等实际场景的数据集中。scikit-learn库提供通过设置`class_weight='balanced'`来调整模型对少数类预测的权重。文章包含代码实现和分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Section I: Brief Introduction on Upsampling/Downsampling

Class imbalance is a quite common problem when working with real-world data-samples from one class or multiple classes are over-represented in a dataset. Intuitively, we can think of several domains where this may occur, such as spam filtering, fraud detection, or screening for diseases.

Here, be warned that one way to deal with imbalanced class proportions during model fitting is a assign a larger penalty to wrong predictions on the minority class . Via scikit-learn, adjusting such a penalty is as convenient as setting the class_weight parameter to class_weight=“balanced”, which is implemented for most classifiers.

FROM
Sebastian Raschka, Vahid Mirjalili. Python机器学习第二版. 南京:东南大学出版社,2018.

Section II: Code and Analyses

第一部分:代码

from sklearn import datasets
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.utils import resample
import warnings
warnings.filterwarnings("ignore")

#Section 1: Load Breast data, i.e., Benign 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值