机器学习-特征抽取-主成分分析法(Principal Component Analysis)

PCA是一种用于高维数据降维的方法,寻找最大方差方向并创建新的正交特征。通过PCA,可以从13维特征降至2维,仍能有效区分数据类别,如酒的种类。该文结合Sebastian Raschka和Vahid Mirjalili的《Python机器学习》进行介绍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Section I: Brief Introduction on PCA

PCA helps us to identify patterns in data based on the correlation between features. In a nutshell, PCA aims to find the directions of maximum variance in high-dimensional data and projects it onto a new subspace with equal or fewer dimensions than the original one. The orthogonal axes (principal components) of new subspace can be interpreted as the directions of maximum variance given the constaint that the new feature aes are orthogonal to each other.
FROM
Sebastian Raschka, Vahid Mirjalili. Python机器学习第二版. 南京:东南大学出版社,2018.

Section II: Code Boundle
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.decomposition import PCA
from PCA.visualize import plot_decision_regions

#Section 1: Prepare data
plt.rcParams['figure.dpi']=200
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值