#Section 1: Load packagefrom sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Perceptron
from sklearn.metrics import accuracy_score
plt.rcParams['figure.dpi']=200
plt.rcParams['savefig.dpi']=200
font ={
'family':'Times New Roman','weight':'light'}
plt.rc("font",**font)
Section II: Load data and split them into train/test dataset
#Section 2: Load data and split it into train/test dataset
iris=datasets.load_iris()
X=iris.data[:,[2,3]]
y=iris.target
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=1,stratify=y)print('Label counts in y:',np.bincount(y))