1. FLANN结合SURF进行关键点匹配与描述
1.1 程序实例
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/features2d/features2d.hpp>
using namespace cv;
using namespace std;
//--------------------------------------【main( )函数】-----------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-----------------------------------------------------------------------------------------------
int main( )
{
//【0】改变console字体颜色
system("color 6F");
//【1】载入图像、显示并转化为灰度图
Mat trainImage = imread("1.jpg"), trainImage_gray;
imshow("原始图",trainImage);
cvtColor(trainImage, trainImage_gray, CV_BGR2GRAY);
//【2】检测Surf关键点、提取训练图像描述符
vector<KeyPoint> train_keyPoint;
Mat trainDescriptor;
SurfFeatureDetector featureDetector(80);
featureDetector.detect(trainImage_gray, train_keyPoint);
SurfDescriptorExtractor featureExtractor;
featureExtractor.compute(trainImage_gray, train_keyPoint, trainDescriptor);
//【3】创建基于FLANN的描述符匹配对象
FlannBasedMatcher matcher;
vector<Mat> train_desc_collection(1, trainDescriptor);
matcher.add(train_desc_collection);
matcher.train();
//【4】创建视频对象、定义帧率
VideoCapture cap(0);
unsigned int frameCount = 0;//帧数
//【5】不断循环,直到q键被按下
while(char(waitKey(1)) != 'q')
{
//<1>参数设置
int64 time0 = getTickCount();
Mat testImage, testImage_gray;
cap >> testImage;//采集视频到testImage中
if(testImage.empty())
continue;
//<2>转化图像到灰度
cvtColor(testImage, testImage_gray, CV_BGR2GRAY);
//<3>检测S关键点、提取测试图像描述符
vector<KeyPoint> test_keyPoint;
Mat testDescriptor;
featureDetector.detect(testImage_gray, test_keyPoint);
featureExtractor.compute(testImage_gray, test_keyPoint, testDescriptor);
//<4>匹配训练和测试描述符
vector<vector<DMatch> > matches;
matcher.knnMatch(testDescriptor, matches, 2);
// <5>根据劳氏算法(Lowe's algorithm),得到优秀的匹配点
vector<DMatch> goodMatches;
for(unsigned int i = 0; i < matches.size(); i++)
{
if(matches[i][0].distance < 0.6 * matches[i][1].distance)
goodMatches.push_back(matches[i][0]);
}
//<6>绘制匹配点并显示窗口
Mat dstImage;
drawMatches(testImage, test_keyPoint, trainImage, train_keyPoint, goodMatches, dstImage);
imshow("匹配窗口", dstImage);
//<7>输出帧率信息
cout << "当前帧率为:" << getTickFrequency() / (getTickCount() - time0) << endl;
}
return 0;
}
2. SIFT配合暴力匹配进行关键点描述与提取
SURF与SIFT算法的比较:
理论上SURF要比SIFT快三倍。
2.1 程序实例
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/features2d/features2d.hpp>
using namespace cv;
using namespace std;
//--------------------------------------【main( )函数】-----------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-----------------------------------------------------------------------------------------------
int main()
{
//【0】改变console字体颜色
system("color 5F");
//【1】载入图像、显示并转化为灰度图
Mat trainImage = imread("2.jpg"), trainImage_gray;
imshow("原始图",trainImage);
cvtColor(trainImage, trainImage_gray, CV_BGR2GRAY);
//【2】检测SIFT关键点、提取训练图像描述符
vector<KeyPoint> train_keyPoint;
Mat trainDescription;
SiftFeatureDetector featureDetector;
featureDetector.detect(trainImage_gray, train_keyPoint);
SiftDescriptorExtractor featureExtractor;
featureExtractor.compute(trainImage_gray, train_keyPoint, trainDescription);
// 【3】进行基于描述符的暴力匹配
BFMatcher matcher;
vector<Mat> train_desc_collection(1, trainDescription);
matcher.add(train_desc_collection);
matcher.train();
//【4】创建视频对象、定义帧率
VideoCapture cap(0);
unsigned int frameCount = 0;//帧数
//【5】不断循环,直到q键被按下
while(char(waitKey(1)) != 'q')
{
//<1>参数设置
double time0 = static_cast<double>(getTickCount( ));//记录起始时间
Mat captureImage, captureImage_gray;
cap >> captureImage;//采集视频到testImage中
if(captureImage.empty())
continue;
//<2>转化图像到灰度
cvtColor(captureImage, captureImage_gray, CV_BGR2GRAY);
//<3>检测SURF关键点、提取测试图像描述符
vector<KeyPoint> test_keyPoint;
Mat testDescriptor;
featureDetector.detect(captureImage_gray, test_keyPoint);
featureExtractor.compute(captureImage_gray, test_keyPoint, testDescriptor);
//<4>匹配训练和测试描述符
vector<vector<DMatch> > matches;
matcher.knnMatch(testDescriptor, matches, 2);
// <5>根据劳氏算法(Lowe's algorithm),得到优秀的匹配点
vector<DMatch> goodMatches;
for(unsigned int i = 0; i < matches.size(); i++)
{
if(matches[i][0].distance < 0.6 * matches[i][1].distance)
goodMatches.push_back(matches[i][0]);
}
//<6>绘制匹配点并显示窗口
Mat dstImage;
drawMatches(captureImage, test_keyPoint, trainImage, train_keyPoint, goodMatches, dstImage);
imshow("匹配窗口", dstImage);
//<7>输出帧率信息
cout << "\t>当前帧率为:" << getTickFrequency() / (getTickCount() - time0) << endl;
}
return 0;
}