堆排序-Java版本

本文介绍堆排序算法的基本原理和实现步骤,包括如何构建大顶堆或小顶堆,并通过不断调整和交换元素达到排序目的。

堆排序:堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。

:堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:

同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子

该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:

大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]

小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]

堆排序的基本思想及基本步骤:

堆排序基本思想及步骤

        堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了 。

步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。

a.假设给定无序序列结构如下:

1.此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。

2.找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

此时,我们就将一个无需序列构造成了一个大顶堆。

步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

a.将堆顶元素9和末尾元素4进行交换

b.重新调整结构,使其继续满足堆定义

c.再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.

后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

再简单总结下堆排序的基本思路:

a.将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;

b.将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;

c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

代码实现 :

代码中主要两个方法:

1、将待排序数组构造成一个大顶堆(元素上升)

2、固定一个最大值,将剩余的数再构造成一个大根堆(元素下降)

package sort;

import java.util.Arrays;

/**
  *
  * 堆排序
 */
public class HeapSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));

    }

   public static void sort(int []arr){
      //1.构建大顶堆
      for(int i=arr.length/2-1;i>=0;i--){
        //从第一个非叶子结点从下至上,从右至左调整结构
          adjustHeap(arr,i,arr.length);

      }
      //2.调整堆结构+交换堆顶元素与末尾元素
      for(int j=arr.length-1;j>0;j--){
         swap(arr,0,j);//将堆顶元素与末尾元素进行交换
         adjustHeap(arr,0,j);//重新对堆进行调
      }
   }

/**
  * 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
  * @param arr
  * @param i
  * @param length
  */
  public static void adjustHeap(int []arr,int i,int length){
         int temp = arr[i];//先取出当前元素i
          for (int k = 2 * i; k < len; k *= 2) {// 沿关键字较大的孩子结点向下筛选
            if (k < len && arr[k] < a[k + 1]){
                ++k; // k为关键字中较大记录的下标
            }
            if(arr[k] >temp){//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
                arr[i] = arr[k];
                    (i=k;)
            }else{
              break;
            }
          }
          arr[i] = temp;//将temp值放到最终的位置
   }

/**
  * 交换元素
  * @param arr
  * @param a
  * @param b
  */
 public static void swap(int []arr,int a ,int b){
     int temp=arr[a];
     arr[a] = arr[b];
     arr[b] = temp;
  }

}

 性能分析

  • 调堆:上面已经分析了,调堆的运行时间为O(h)。
  • 建堆:每一层最多的节点个数为n1 = ceil(n/(2^(h+1))),

​编辑

因此,建堆的运行时间是O(n)。

  • 循环调堆,因为需要调堆的是堆顶元素,所以运行时间是O(h) = O(floor(logn))。所以循环调堆的运行时间为O(nlogn)。

总运行时间T(n) = O(nlogn) + O(n) = O(nlogn)。对于堆排序的最好情况与最坏情况的运行时间,因为最坏与最好的输入都只是影响建堆的运行时间O(1)或者O(n),而在总体时间中占重要比例的是循环调堆的过程,即O(nlogn) + O(1) =O(nlogn) + O(n) = O(nlogn)。因此最好或者最坏情况下,堆排序的运行时间都是O(nlogn)。而且堆排序还是原地算法(in-place algorithm)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值