MIND & MIND-SSC: Contrast- and Modality-invariant Image Similarity for Multimodal Image Registration

本文介绍了MIND(模态独立邻域描述符)和SSC(自相似上下文)在多模态图像配准中的应用。MIND用于多模态配准,而SSC通过提高匹配的鲁棒性来改进MIND。研究显示,SSC在3DUS和MRI脑部扫描配准中实现了快速计算和高精度,平均误差2.1mm,比传统方法更优。

👉 OBELISK 方法通过可变形卷积实现深度学习,从而减少层数来解决 3D 多器官分割问题1


👉 Contrast- and modality-invariant image similarity

  • 模态独立邻域描述符(MIND) 是一种多维局部图像描述符,可实现多模态配准。在配准单模态的扫描时,它还被证明可以提高准确性和鲁棒性。每个 MIND 描述符只计算在一个 patch 内的距离(一个扫描的局部邻域内)。MIND 的比较是以采样样例的平方/绝对差之和来表示的。

    The Modality independent neighbourhood descriptor (MIND) is a multi-dimensional local image descriptor, which enables multi-modal registration. It has also been shown to improve accuracy and robustness when registering scans of the same modality. Each MIND descriptor is calculated based on patch distances (within the local neighbourhood of the same scan). Comparison of MIND representations is performed as sum of squared/absolute differences of its entries.

  • 自相似上下文(SSC)是 MIND 的改进,它重新定义了邻域布局以提高匹配的鲁棒性。它还带有有效的量化方案,允许使用 Hamming weight 计算成对距离。

    The self-similarity context (SSC) is an improvement of MIND, which redefines the neighbourhood layout to improve the robustness of the matching. It also comes with an efficient quantisation scheme, which allows the computation of pair-wise distances using the Hamming weight. Matlab code is available to extract MIND/SSC descriptors for 3D volumes and calculate a distance image. Derivatives can be estimated using finite differences.

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Skr.B

WUHOOO~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值