『输出方案的区间DP』Folding

本文介绍了如何使用动态规划(DP)方法解决序列折叠问题,目标是找到使折叠序列字符数尽可能少的方法。通过分析序列折叠的定义,提出了计算区间最小字符数的策略,并给出了具体的DP状态转移方程。此外,还分享了该问题对DP输出反感处理的启示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem

Bill试图通过折叠其中的重复子序列来紧凑地表示从“A”到“Z”的大写字母字符序列。

例如,表示序列AAAAAAAAAABABABCCD的一种方法是10(A)2(BA)B2(C)D。他通过以下方式正式定义了折叠的字符序列以及它们的展开变换: 包含从“A”到“Z”的单个字符的序列被认为是折叠序列。展开此序列会产生单个字符本身的相同序列。 如果S和Q是折叠序列,则SQ也是折叠序列。如果S展开到S’并且Q展开到Q’,则SQ展开到S’Q’。

如果S是折叠序列,则X(S)也是折叠序列,其中X是大于1的整数的十进制表示。如果S展开到S’,则X(S)展开到S’重复X倍。

根据这个定义,很容易展开任何给定的折叠序列。但是,比尔对逆向转型更感兴趣。他希望折叠给定的序列,使得得到的折叠序列包含尽可能少的字符数。

Dolution

我们设 f [ i ] [ j ] f[i][j] f[i][j]表示 [ i , j ] [i,j] [i,j]的最小字符数,设 g [ i ] [ j ] g[i][j] g[i][j]表示 [ i , j ] [i,j] [i,j]的反感。

显然对于区间 [ i , j ] [i,j] [i,j]的答案,一定分为两部分:

  • 由子区间转移过来;即两个子区间之和.可以得到: f [ i ] [ j ] = f [ i ] [ k ] + f [ k + 1 ] [ j ] . f[i][j]=f[i][k]+f[k+1][j]. f[i][j]=f[i][k]+f[k+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值