SQL优化

目录

SQL的执行顺序

SQL优化

创建mysql-db库

准备student表

准备tb_dept表

准备tb_user表

查询SQL尽量不要使用select *,而是具体字段

避免在where子句中使用or来连接条件

使用varchar代替char

尽量使用数值替代字符串类型

查询尽量避免返回大量数据

使用explain分析你SQL执行计划

是否使用了索引及其扫描类型

创建name字段的索引

优化like语句

字符串怪现象

索引不宜太多,一般5个以内

where限定查询的数据

避免在where中对字段进行表达式操作

去重distinct过滤字段要少

where中使用默认值代替null

批量插入性能提升

批量删除优化

伪删除设计商品状态(state):1-上架、2-下架、3-删除

提高group by语句的效率

复合索引最左特性

排序字段创建索引

删除冗余和重复的索引

不要有超过5个以上的表连接

inner join 、left join、right join,优先使用inner join

in子查询的优化

尽量使用union all替代union


SQL的执行顺序

(1) FROM [left_table] 选择表
 
(2) ON <join_condition> 链接条件
 
(3) <join_type> JOIN <right_table> 链接
 
(4) WHERE <where_condition> 条件过滤
 
(5) GROUP BY <group_by_list> 分组
 
(6) AGG_FUNC(column or expression),... 聚合
 
(7) HAVING <having_condition> 分组过滤
 
(8) SELECT (9) DISTINCT column,... 选择字段、去重
 
(9) ORDER BY <order_by_list> 排序
 
(10) LIMIT count OFFSET count; 分页

SQL优化

创建mysql-db库

CREATE DATABASE /*!32312 IF NOT EXISTS*/`mysql-db` /*!40100 DEFAULT CHARACTER SET utf8 */;
 
USE `mysql-db`;

准备student表

DROP TABLE IF EXISTS `student`;
 
CREATE TABLE `student` (
 
`id` varchar(4) NOT NULL,
 
`NAME` varchar(20) DEFAULT NULL,
 
`sex` char(2) DEFAULT NULL,
 
`birthday` date DEFAULT NULL,
 
`salary` decimal(7,2) DEFAULT NULL,
 
PRIMARY KEY (`id`)
 
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
 
insert into `student`(`id`,`NAME`,`sex`,`birthday`,`salary`) values ('1','张慎政','男','2020-01-01','10000.00'),('2','刘沛霞','女','2020-01-02','10000.00'),('3','刘昱江','男','2020-01-03','10000.00'),('4','齐雷','男','2020-01-04','20000.00'),('5','王海涛','男','2020-01-05','20000.00'),('6','董长春','男','2020-01-06','10000.00'),('7','张久军','男','2020-01-07','20000.00'),('8','陈子枢','男','2020-10-11','3000.00');

准备tb_dept表

DROP TABLE IF EXISTS `tb_dept`;
 
CREATE TABLE `tb_dept` (
 
`id` int(11) NOT NULL AUTO_INCREMENT,
 
`name` varchar(50) DEFAULT NULL,
 
`parent_id` int(11) DEFAULT NULL,
 
`sort` int(11) DEFAULT NULL,
 
`note` varchar(100) DEFAULT NULL,
 
`created` timestamp NOT NULL DEFAULT current_timestamp() ON UPDATE current_timestamp(),
 
`updated` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',
 
PRIMARY KEY (`id`)
 
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8;
 
insert into `tb_dept`(`id`,`name`,`parent_id`,`sort`,`note`,`created`,`updated`) values (1,'集团',0,1,'集团总部','2018-10-02 09:15:14','2018-09-27 16:35:54'),(2,'财务部',1,2,'财务管理','2018-09-27 16:35:52','2018-09-27 16:34:15'),(3,'软件部',1,3,'开发软件、运维','2018-09-27 16:35:54','2018-09-27 16:34:51');

准备tb_user表

DROP TABLE IF EXISTS `tb_user`;
 
CREATE TABLE `tb_user` (
 
`id` int(11) NOT NULL AUTO_INCREMENT,
 
`dept_id` int(11) DEFAULT NULL,
 
`username` varchar(50) DEFAULT NULL,
 
`password` varchar(100) DEFAULT NULL,
 
`salt` varchar(50) DEFAULT NULL,
 
`email` varchar(100) DEFAULT NULL,
 
`mobile` varchar(100) DEFAULT NULL,
 
`valid` tinyint(4) DEFAULT NULL,
 
`created` timestamp NOT NULL DEFAULT current_timestamp() ON UPDATE current_timestamp(),
 
`updated` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',
 
PRIMARY KEY (`id`)
 
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8;
 
insert into `tb_user`(`id`,`dept_id`,`username`,`password`,`salt`,`email`,`mobile`,`valid`,`created`,`updated`) values (1,1,'陈集团','123456',NULL,'tony@sina.com','13572801415',1,'2018-09-30 09:32:18','2018-09-30 09:32:18'),(2,3,'牛软件','567890',NULL,'niu@sina.com','13208737172',0,'2018-10-02 09:23:19','2018-09-20 09:32:18');

查询SQL尽量不要使用select *,而是具体字段

反例:SELECT * FROM student
 
正例:SELECT id,NAME FROM student
 
理由:
 
字段多时,大表能达到100多个字段甚至达200多个字段
只取需要的字段,节省资源、减少网络开销
select * 进行查询时,很可能不会用到索引,就会造成全表扫描

避免在where子句中使用or来连接条件

 
反例:SELECT * FROM student WHERE id=1 OR salary=30000
 
正例:
 
# 分开两条sql写
 
SELECT * FROM student WHERE id=1
 
SELECT * FROM student WHERE salary=30000
 
理由:
 
使用or可能会使索引失效,从而全表扫描
对于or没有索引的salary这种情况,假设它走了id的索引,但是走到salary查询条件时,它还得全表扫描。也就是说整个过程需要三步:全表扫描+索引扫描+合并。如果它一开始就走全表扫描,直接一遍扫描就搞定。虽然mysql是有优化器的,处于效率与成本考虑,遇到or条件,索引还是可能失效的

使用varchar代替char

反例:`deptname` char(100) DEFAULT NULL COMMENT '部门名称'
 
正例:`deptname` varchar(100) DEFAULT NULL COMMENT '部门名称'
 
理由:
 
varchar变长字段按数据内容实际长度存储,存储空间小,可以节省存储空间
char按声明大小存储,不足补空格
其次对于查询来说,在一个相对较小的字段内搜索,效率更高

尽量使用数值替代字符串类型

主键(id):primary key优先使用数值类型int,tinyint
性别(sex):0-代表女,1-代表男;数据库没有布尔类型,mysql推荐使用tinyint
支付方式(payment):1-现金、2-微信、3-支付宝、4-信用卡、5-银行卡
服务状态(state):1-开启、2-暂停、3-停止
商品状态(state):1-上架、2-下架、3-删除

查询尽量避免返回大量数据

如果查询返回数据量很大,就会造成查询时间过长,网络传输时间过长。同时,大量数据返回也可能没有实际意义。如返回上千条甚至更多,用户也看不过来。

通常采用分页,一页习惯10/20/50/100条。

使用explain分析你SQL执行计划


SQL很灵活,一个需求可以很多实现,那哪个最优呢?SQL提供了explain关键字,它可以分析你的SQL执行计划,看它是否最佳。Explain主要看SQL是否使用了索引。
 

EXPLAIN
 
SELECT * FROM student WHERE id=1

是否使用了索引及其扫描类型

type:

  • ALL 全表扫描,没有优化,最慢的方式
  • index 索引全扫描
  • range 索引范围扫描,常用语<,<=,>=,between等操作
  • ref 使用非唯一索引扫描或唯一索引前缀扫描,返回单条记录,常出现在关联查询中
  • eq_ref 类似ref,区别在于使用的是唯一索引,使用主键的关联查询
  • const/system 单条记录,系统会把匹配行中的其他列作为常数处理,如主键或唯一索引查询
  • null MySQL不访问任何表或索引,直接返回结果

key:

  •  真正使用索引的方式

创建name字段的索引

ALTER TABLE student ADD INDEX index_name (NAME)

优化like语句

模糊查询,程序员最喜欢的就是使用like,但是like很可能让你的索引失效

反例:

EXPLAIN
 
SELECT id,NAME FROM student WHERE NAME LIKE '%1'
 
EXPLAIN
 
SELECT id,NAME FROM student WHERE NAME LIKE '%1%'

正例:

EXPLAIN
 
SELECT id,NAME FROM student WHERE NAME LIKE '1%'

字符串怪现象

反例:

#未使用索引
 
EXPLAIN
 
SELECT * FROM student WHERE NAME=123

正例:

#使用索引
 
EXPLAIN
 
SELECT * FROM student WHERE NAME='123'

理由:

  • 为什么第一条语句未加单引号就不走索引了呢?这是因为不加单引号时,是字符串跟数字的比较,它们类型不匹配,MySQL会做隐式的类型转换,把它们转换为数值类型再做比较

索引不宜太多,一般5个以内

如性别字段。因为SQL优化器是根据表中数据量来进行查询优化的,如果索引列有大量重复数据,Mysql查询优化器推算发现不走索引的成本更低,很可能就放弃索引了。

where限定查询的数据

数据中假定就一个男的记录

反例:

SELECT id,NAME FROM student WHERE sex='男'

正例:

SELECT id,NAME FROM student WHERE id=1 AND sex='男'

理由:

  • 需要什么数据,就去查什么数据,避免返回不必要的数据,节省开销

避免在where中对字段进行表达式操作

反例:

EXPLAIN
 
SELECT * FROM student WHERE id+1-1=+1

正例:

EXPLAIN
 
SELECT * FROM student WHERE id=+1-1+1
 
EXPLAIN
 
SELECT * FROM student WHERE id=1

理由:

  • SQL解析时,如果字段相关的是表达式就进行全表扫描

避免在where子句中使用!=或<>操作符

应尽量避免在where子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描。记住实现业务优先,实在没办法,就只能使用,并不是不能使用。如果不能使用,SQL也就无需支持了。

反例:

EXPLAIN
 
SELECT * FROM student WHERE salary!=3000
 
EXPLAIN
 
SELECT * FROM student WHERE salary<>3000

理由:

  • 使用!=和<>很可能会让索引失效
  • 去重distinct过滤字段要少

#索引失效

EXPLAIN
 
SELECT DISTINCT  *  FROM student

#索引生效

EXPLAIN
 
SELECT DISTINCT id,NAME FROM student
 
EXPLAIN
 
SELECT DISTINCT NAME FROM student

理由:

  • 带distinct的语句占用cpu时间高于不带distinct的语句。因为当查询很多字段时,如果使用distinct,数据库引擎就会对数据进行比较,过滤掉重复数据,然而这个比较、过滤的过程会占用系统资源,如cpu时间

where中使用默认值代替null

#修改表,增加age字段,类型int,非空,默认值0

ALTER TABLE student ADD age INT NOT NULL DEFAULT 0;

 

批量插入性能提升

大量数据提交,上千,上万,批量性能非常快,mysql独有

多条提交:

INSERT INTO student (id,NAME) VALUES(4,'齐雷');
 
INSERT INTO student (id,NAME) VALUES(5,'刘昱江');

批量提交:

INSERT INTO student (id,NAME) VALUES(4,'齐雷'),(5,'刘昱江');

理由:

  • 默认新增SQL有事务控制,导致每条都需要事务开启和事务提交;而批量处理是一次事务开启和提交。自然速度飞升
  • 数据量小体现不出来

批量删除优化

避免同时修改或删除过多数据,因为会造成cpu利用率过高,会造成锁表操作,从而影响别人对数据库的访问。

反例:

#一次删除10万或者100万+?

delete from student where id <100000;

#采用单一循环操作,效率低,时间漫长

for(User user:list){
 
delete from student;
 
}

正例:

//分批进行删除,如每次500

for(){
 
delete student where id<500;
 
}
 
delete student where id>=500 and id<1000;

理由:

  • 一次性删除太多数据,可能造成锁表,会有lock wait timeout exceed的错误,所以建议分批操作

伪删除设计
商品状态(state):1-上架、2-下架、3-删除

理由:

  • 这里的删除只是一个标识,并没有从数据库表中真正删除,可以作为历史记录备查
  • 同时,一个大型系统中,表关系是非常复杂的,如电商系统中,商品作废了,但如果直接删除商品,其它商品详情,物流信息中可能都有其引用。
  • 通过where state=1或者where state=2过滤掉数据,这样伪删除的数据用户就看不到了,从而不影响用户的使用
  • 操作速度快,特别数据量很大情况下
     

提高group by语句的效率

可以在执行到该语句前,把不需要的记录过滤掉

反例:先分组,再过滤

select job,avg(salary) from employee
group by job
having job ='president' or job = 'managent';

正例:先过滤,后分组

select job,avg(salary) from employee
where job ='president' or job = 'managent'
group by job;

复合索引最左特性


创建复合索引,也就是多个字段

ALTER TABLE student ADD INDEX idx_name_salary (NAME,salary)

满足复合索引的左侧顺序,哪怕只是部分,复合索引生效

EXPLAIN

SELECT * FROM student WHERE NAME='陈子枢'

没有出现左边的字段,则不满足最左特性,索引失效

EXPLAIN

SELECT * FROM student WHERE salary=3000

复合索引全使用,按左侧顺序出现 name,salary,索引生效

EXPLAIN

SELECT * FROM student WHERE NAME='陈子枢' AND salary=3000

虽然违背了最左特性,但MYSQL执行SQL时会进行优化,底层进行颠倒优化

EXPLAIN

SELECT * FROM student WHERE salary=3000 AND NAME='陈子枢'

理由:

  • 复合索引也称为联合索引
  • 当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则
  • 联合索引不满足最左原则,索引一般会失效,但是这个还跟Mysql优化器有关的
     

排序字段创建索引

什么样的字段才需要创建索引呢?原则就是where和order by中常出现的字段就创建索引。

#使用*,包含了未索引的字段,导致索引失效

EXPLAIN

SELECT * FROM student ORDER BY NAME;

EXPLAIN

SELECT * FROM student ORDER BY NAME,salary

#name字段有索引

EXPLAIN

SELECT id,NAME FROM student ORDER BY NAME

#name和salary复合索引

EXPLAIN

SELECT id,NAME FROM student ORDER BY NAME,salary

EXPLAIN

SELECT id,NAME FROM student ORDER BY salary,NAME

#排序字段未创建索引,性能就慢

EXPLAIN

SELECT id,NAME FROM student ORDER BY sex
 

删除冗余和重复的索引

SHOW INDEX FROM student

#创建索引index_name

ALTER TABLE student ADD INDEX index_name (NAME)

#删除student表的index_name索引

DROP INDEX index_name ON student ;

#修改表结果,删除student表的index_name索引

ALTER TABLE student DROP INDEX index_name ;

#主键会自动创建索引,删除主键索引

ALTER TABLE student DROP PRIMARY KEY ;
 

不要有超过5个以上的表连接

  • 关联的表个数越多,编译的时间和开销也就越大
  • 每次关联内存中都生成一个临时表
  • 应该把连接表拆开成较小的几个执行,可读性更高
  • 如果一定需要连接很多表才能得到数据,那么意味着这是个糟糕的设计了
  • 阿里规范中,建议多表联查三张表以下

inner join 、left join、right join,优先使用inner join

三种连接如果结果相同,优先使用inner join,如果使用left join左边表尽量小

  • inner join 内连接,只保留两张表中完全匹配的结果集
  • left join会返回左表所有的行,即使在右表中没有匹配的记录
  • right join会返回右表所有的行,即使在左表中没有匹配的记录

理由:

  • 如果inner join是等值连接,返回的行数比较少,所以性能相对会好一点
  • 同理,使用了左连接,左边表数据结果尽量小,条件尽量放到左边处理,意味着返回的行数可能比较少。这是mysql优化原则,就是小表驱动大表,小的数据集驱动大的数据集,从而让性能更优
     

in子查询的优化

日常开发实现业务需求可以有两种方式实现:

一种使用数据库SQL脚本实现
一种使用程序实现
如需求:查询所有部门的所有员工:

#in子查询

SELECT * FROM tb_user WHERE dept_id IN (SELECT id FROM tb_dept);

#这样写等价于:

#先查询部门表

SELECT id FROM tb_dept

#再由部门dept_id,查询tb_user的员工

SELECT * FROM tb_user u,tb_dept d WHERE u.dept_id = d.id

假设表A表示某企业的员工表,表B表示部门表,查询所有部门的所有员工,很容易有以下程序实现,可以抽象成这样的一个嵌套循环:

List<> resultSet;

for(int i=0;i<B.length;i++) {
for(int j=0;j<A.length;j++) {
if(A[i].id==B[j].id) {
resultSet.add(A[i]);

break;

}

}

}

上面的需求使用SQL就远不如程序实现,特别当数据量巨大时。

理由:

  • 数据库最费劲的就是程序链接的释放。假设链接了两次,每次做上百万次的数据集查询,查完就结束,这样就只做了两次;相反建立了上百万次链接,申请链接释放反复重复,就会额外花费很多实际,这样系统就受不了了,慢,卡顿

尽量使用union all替代union

反例:

SELECT * FROM student

UNION

SELECT * FROM student

正例:

SELECT * FROM student

UNION ALL

SELECT * FROM student

理由:

  • union和union all的区别是,union会自动去掉多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复
  • union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序
  • union在进行表链接后会筛选掉重复的记录,所以在表链接后会对所产生的结果集进行排序运算,删除重复的记录再返回结果。实际大部分应用中是不会产生重复的记录,最常见的是过程表与历史表UNION
     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值