Android TV -2- Building TV Playback Apps

本文介绍如何使用Leanback支持库为电视应用构建流畅且吸引人的媒体浏览及播放体验。无论您的应用提供小型还是大型媒体目录,都需要使用户能够快速浏览选项并获取所需内容。通过使用Leanback库,可以轻松创建高效的媒体浏览界面。

Building TV Playback Apps

Dependencies and Prerequisites

  • Android 5.0 (API level 21) or higher

You should also read

VIDEO

DevBytes: Android TV — Using the Leanback library

Browsing and playing media files is frequently part of the user experience provided by a TV app. Building such an experience from scratch, while making sure that it is fast, fluid, and attractive can be quite challenging. Whether your app provides access to a small or large media catalog, it is important to allow users to quickly browse options and get to the content they want.

The Android framework provides classes for building user interfaces for these types of apps with the v17 leanback support library. This library provides a framework of classes for creating an efficient and familiar interface for browsing and playing media files with minimal coding. The classes are designed to be extended and customized so you can create an experience that is unique to your app.

This class shows you how to build a TV app for browsing and playing media content using the Leanback support libraries for TV.

Topics



Creating a Catalog Browser
Learn how to use the Leanback support library to build a browsing interface for media catalogs.
Providing a Card View
Learn how to use the Leanback support library to build a card view for content items.
Building a Details View
Learn how to use the Leanback support library to build a details page for media items.
Displaying a Now Playing Card
Learn how to use a MediaSession to display a Now Playing card on the home screen.
Enabling Background Playback
Learn how to continue playback when the user clicks on  Home.
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值